Current time in Korea 16:51 Jul 17 (Wed) Year 2024 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(JKCS) > Final Edit

Journal of the Korean Chemical Society (JKCS)

ISSN 1017-2548(Print)
ISSN 2234-8530(Online)
Volume 68, Number 3
JKCSEZ 68(3)
June 20, 2024 

 
Title
Acid-Catalyzed Hydrolysis of Hexacyanoferrate (III) to Prussian Blue via Sequential Mechanism
Author
Youngjin Jeon
Keywords
Hexacyanoferrate, Acid-catalyzed hydrolysis, Prussian blue, Mechanism study, ESI mass spectra
Abstract
This study aims to elucidate the mechanism involved in the hydrolysis of the hexacyanoferrate(III) complex ion (Fe(CN)63-) and the mechanism leading to the formation of Prussian blue (FeIII4[FeII(CN)6]3·xH2O, PB) in acidic aqueous solutions at moderately elevated temperatures. Hydrolysis constitutes a crucial step in generating PB through the widely used single-source or precursor method. Recent PB syntheses predominantly rely on the single-source method, where hexacyanoferrate( II/III) is the exclusive reactant, as opposed to the co-precipitation method employing bare metal ions and hexacyanometalate ions. Despite the widespread adoption of the single-source method, mechanistic exploration remains largely unexplored and speculative. Utilizing UV-vis spectrophotometry, negative-ion mode liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and a devised reaction, this study identifies crucial intermediates, including aqueous Fe2+/3+ ions and hydrocyanic acid (HCN) in the solution. These two intermediates eventually combine to form thermodynamically stable PB. The findings presented in this research significantly contribute to understanding the fundamental mechanism underlying the acid-catalyzed hydrolysis of the hexacyanoferrate(III) complex ion and the subsequent formation of PB, as proposed in the sequential mechanism introduced herein. This finding might contribute to the cost-effective synthesis of PB by incorporating diverse metal ions and potassium cyanide.
Page
139 - 145
Full Text
PDF / Supporting Information