Current time in Korea 20:41 May 18 (Sat) Year 2024 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 35, Number 3
BKCSDE 35(3)
March 20, 2014 

 
Title
A Gas-Phase Investigation of Oxygen-Hydrogen Exchange Reaction of O(3P) + C2H5 → H(2S) + C2H4O
Author
Su-Chan Jang, Min-Jin Park, Jong-Ho Choi*
Keywords
Ethyl radicals, Oxygen-hydrogen exchange reaction, Crossed-beam apparatus, Doppler spectra, Ab initio calculations
Abstract
The gas-phase radical-radical reaction O(3P) + C2H5 (ethyl) → H(2S) + CH3CHO (acetaldehyde) was investigated by applying a combination of vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed beam configuration and ab initio calculations. The two radical reactants O(3P) and C2H5 were respectively produced by photolysis of NO2 and supersonic flash pyrolysis of the synthesized precursor azoethane. Doppler profile analysis of the nascent H-atom products in the Lyman-α region revealed that the average translational energy of the products and the average fraction of the total available energy released as translational energy were 5.01 ± 0.72 kcal mol−1 and 6.1%, respectively. The empirical data combined with CBS-QB3 level ab initio theory and statistical calculations demonstrated that the title exchange reaction is a major channel and proceeds via an addition-elimination mechanism through the formation of a short-lived, dynamical addition complex on the doublet potential energy surface. On the basis of systematic comparison with several exchange reactions of hydrocarbon radicals, the observed small kinetic energy release can be explained in terms of the loose transition state with a product-like geometry and a small reverse activation barrier along the reaction coordinate.
Page
839 - 844
Full Text
PDF