Current time in Korea 21:41 Dec 05 (Sat) Year 2020 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(JKCS) > Archives

Journal of the Korean Chemical Society (JKCS)

ISSN 1017-2548(Print)
ISSN 2234-8530(Online)
Volume 34, Number 2
JKCSEZ 34(2)
April 20, 1990 

 
Title
Macrocyclic Complexes of Actinide and Lanthanide Metals (Ⅰ). Formation and Properties of Cation Complexes with Macrocyclic Ligands

악틴 및 란탄족금속의 거대고리 착물 (제 1 보). 거대고리 리간드의 금속착물의 형성과 성질
Author
Oh Jin Jung, Chil Nam Choi, Suk Jin Youn, Youn Soo Sohn

정오진, 최칠남, 윤석진, 손연수
Keywords
Abstract
본 연구에서는 동공의 크기가 다른 5종의 crown ether과 9종의 crownand계와 1종의 cryptand계 거대고리 리간드를 포함하는 우라늄(Ⅵ), 토륨(Ⅳ) 및 네오디뮴(Ⅲ), 사마륨(Ⅲ), 홀뮴(Ⅲ) 등의 희토류 금속착물을 합성 후, 고체착물의 조성식을 결정하고 적외선 스펙트럼에 의하여 구조를 확인한 다음 핵자기공명 분광법에 의하여 착물용액의 조성비와 분자내의 착물형성 site를 결정하고 착물들의 용매화 현상과 리간드 교환반응성을 핵자기공명 분광법으로 고찰하였다. crown ether 거대고리 리간드들은 실험에 사용한 모든 금속이온과 안정한 착물을 형성하므로 OCH2 메틸렌 양성자들은 모두 낮은 자기장 방향으로 화학적 이동을 나타냈으며 같은 금속이온에 대한 화학적 이동값은 12C4<15C5<18C6의 순으로 증가하였고 같은 리간드에 대한 희토류 착물의 화학적 이동값은 원자번호 크기에 반비례하였다. crownand 22는 우라늄(Ⅵ)과 산소 및 질소원자를 배위하는 안정한 착물을 형성하지만 희토류 금속과는 착물을 형성하지 않았다. 반면에 희토류 금속(Ⅲ)이온은 cryptand 221리간드와 모든 산소 및 질소원자를 배위자로 하는 안정한 착물을 형성할 수 있었다. 나머지 질소와 산소원자를 포함한 crownand 계열 거대고리 리간드는 우라늄(Ⅵ)과 역시 모든 산소 및 질소가 배위하는 착물을 형성하지만 희토류 금속(Ⅲ)과는 착물을 형성하지 않음을 확인할 수 가 있었다. 우라늄(Ⅵ)과 희토류(Ⅲ)금속이온은 모든 거대고리 리간드와 1:1착물을 각각 형성하며 토륨(Ⅳ)이온은 12C4와 1:2 나머지 리간드와는 1:1착물을 각각 형성함을 알 수 있었다. 이들 거대고리 리간드 착물들의 안정성은 착물의 양성자 이동결과에 잘 일치하였다. 그리고 18C6와 물을 리간드로 하는 희토류 금속(Ⅲ) 착물은 아세틸아세톤 용매내에서 리간드 교환반응이 일어나지만 우라늄(Ⅵ)착물의 경우에는 교환반응이 일어나지 않았다.

Metal complexes were prepared by reacting uranium (Ⅵ), thorium (Ⅳ) and rare earth metal (Ⅲ) ions including Nd (Ⅲ), Sm (Ⅲ) and Ho (Ⅲ) with macrocyclic ligands including five crown ethers, nine crownands and one cryptand ligands, and subjected to NMR studies in order to examine coordination sites of the ligands and compositions of the complexes formed. Among the marcocyclic ligands, crown ethers and crownand ligands have shown down-field shifts of the methylene protons of the lcigands by forming stable complexes with all the metal ions and the differences of chemical shifts were decreased as increasing of the cavity-size of crown ethers for the same metal ions and decreasing of the atomic number of the rare earth metals for the same ligands. It has been found that crownand 22 gave a stable complex with uranium(Ⅵ) ion by the coordination through both oxygen and nitrogen atoms of the ligand whereas no complex was formed with the rare earth metal(Ⅲ) ions, which on the other hand were found to form stable complexes with cryptand 221. The rest of the crowand ligands have also been found to form stable complexes with uranium(Ⅵ) ion by coordinating through all the oxygen and nitrogen atoms of the ligands whereas no complexes were formed with the rare earth metal(Ⅲ) ions. It has also been shown by 1H-NMR study that uranium(Ⅵ), thorium(Ⅳ) and rare earth metal(Ⅲ) ions formed 1:1 complexes with the macrocyclic ligands except for thorium(Ⅳ) complex of 12C4 in which the mole ratio of metal to ligand is 1:2. More stable metal complexes show larger changes in chemical shifts of the coordinated ligand protons. Finally, the rare earth metal(Ⅲ) complexes of 18C6 have shown ligand exchange reaction with the solvent molecules in acetylacetone solution, which was not observed for the uranium (Ⅵ) complexes.

Page
143 - 158
Full Text
PDF