Current time in Korea 13:23 Dec 02 (Wed) Year 2020 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 35, Number 9
BKCSDE 35(9)
September 20, 2014 

A Theoretical Study of the Formation of Benzene Excimer: Effects of Geometry Relaxation and Spin-state Dependence
Dongwook Kim
Benzene excimer, Geometry relaxation effects, Singlet vs triplet, Ab initio calculation
Geometry relaxation effects on the formation of benzene excimer were investigated by means of ab initio calculation at SOS-CIS(D0)/aug-cc-pVDZ level. In the case of T-shaped dimer configuration, intermolecular interactions in the excited states are found to be nearly the same as those in the ground state and structural deformations are limited within a single molecule; the geometry relaxation effects are then negligible and singlet-triplet energy gap remains constant. As for face-to-face eclipsed dimer, on the other hand, both molecules undergo structural change. As a result, intermolecular interactions in the excited states are significantly different than those in the ground state. Although the intermolecular distances obtained from potential energy curve calculation with frozen molecular structures are in qualitative agreement, the excitedstate binding energies are notably overestimated with respect to those at optimized structures. In particular, the effects are calculated to be larger in T1 state and hence singlet-triplet energy gap, which reduces markedly in this configuration, is underestimated without relaxation.
2738 - 2742
Full Text