Current time in Korea 02:05 Apr 27 (Sat) Year 2024 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 35, Number 7
BKCSDE 35(7)
July 20, 2014 

 
Title
DFT Study for Adsorption and Decomposition Mechanism of Trimethylene Oxide on Al(111) Surface
Author
Cai-Chao Ye, Jie Sun, Feng-Qi Zhao, Si-Yu Xu, Xue-Hai Ju*
Keywords
Trimethylene oxide, Adsorption and dissociation, Al(111) surface, Density functional theory
Abstract
The adsorption and decomposition of trimethylene oxide (C3H6O) molecule on the Al(111) surface were investigated by the generalized gradient approximation (GGA) of density functional theory (DFT). The calculations employed a supercell (6 × 6 × 3) slab model and three-dimensional periodic boundary conditions. The strong attractive forces between C3H6O molecule and Al atoms induce the C-O bond breaking of the ring C3H6O molecule. Subsequently, the dissociated radical fragments of C2H6O molecule oxidize the Al surface. The largest adsorption energy is about −260.0 kJ/mol in V3, V4 and P2, resulting a ring break at the C-O bond. We also investigated the decomposition mechanism of C3H6O molecules on the Al(111) surface. The activation energies (Ea) for the dissociations V3, V4 and P2 are 133.3, 166.8 and 174.0 kJ/mol, respectively. The hcp site is the most reactive position for C3H6O decomposing.
Page
2013 - 2018
Full Text
PDF