Current time in Korea 15:14 Apr 26 (Fri) Year 2024 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 33, Number 9
BKCSDE 33(9)
September 20, 2012 

 
Title
Alternative Mechanism of Aspirin in Anti-Thrombotic Therapy: Inhibition of Thrombin Activatable Fibrinolysis Inhibitor
Author
Seong Soo A. An*, Robert S. Greenfield
Keywords
Aspirin, Thrombin activatable fibrinolysis inhibitor (TAFI), Fibrinolysis
Abstract
The use of aspirin is widely recommended for the prevention of heart attacks owing to its ability to inhibit platelet activation by irreversibly blocking cyclooxygenase 1. However, aspirin also affects the fibrinolytic and hemostatic pathways by mechanisms that are not well understood, causing severe hemorrhagic complications. Here, we investigated the ability of aspirin and aspirin metabolites to inhibit thrombin-activatable fibrinolysis inhibitor (TAFI), the major inhibitor of plasma fibrinolysis. TAFI is activated via proteolytic cleavage by the thrombin-thrombomodulin complex to TAFIa, a carboxypeptidase B-like enzyme. TAFIa modulates fibrinolysis by removing the C-terminal arginine and lysine residues from partially degraded fibrin, which in turn inhibits the binding of plasminogen to fibrin clots. Aspirin and its major metabolites, salicylic acid, gentisic acid, and salicyluric acid, inhibit TAFIa carboxypeptidase activity. Salicyluric acid effectively blocks activation of TAFI by thrombin-thrombomodulin; however, salicylates do not inhibit carboxypeptidase N or pancreatic carboxypeptidase B. Aspirin and other salicylates accelerated the dissolution of fibrin clots and reduced thrombus formation in an in vitro model of fibrinolysis. Inhibition of TAFI represents a novel hemostatic mechanism that contributes to aspirin’s therapy-associated antithrombotic activity and hemorrhagic complications.
Page
3048 - 3054
Full Text
PDF