Current time in Korea 03:52 Apr 27 (Sat) Year 2024 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 31, Number 5
BKCSDE 31(5)
May 20, 2010 

 
Title
Kinetic Investigation of CO2 Reforming of CH4 over Ni Catalyst Deposited
on Silicon Wafer Using Photoacoustic Spectroscopy
Author
Jin Hyuck Yang, Ji Woong Kim, Young Gil Cho, Hong Lyoul Ju, Sung Han Lee*, Joong Gill Choi*
Keywords
Ni/silicon wafer catalyst, CO2 reforming of CH4, Photoacoustic spectroscopy
Abstract
The CO2-CH4 reaction catalyzed by Ni/silicon wafers was kinetically studied by using a photoacoustic technique. The catalytic reaction was performed at various partial pressures of CO2 and CH4 (50 Torr total pressure of CO2/CH4/N2) in the temperature range of 500 - 650 °C in a static reactor system. The photoacoustic signal that varied with the CO2 concentration during the catalytic reaction was recorded as a function of time. Under the reaction conditions, the CO2 photoacoustic measurements showed the as-prepared Ni thin film sample to be inactive for the reaction, while the CO2/CH4 reactions carried out in the presence of the sample pre-treated in H2 at 600 °C were associated with significant time-dependent changes in the CO2 photoacoustic signal. The rate of CO2 disappearance was measured from the CO2 photoacoustic signal data in the early reaction period of 50 - 150 sec to obtain precise kinetic data. The apparent activation energy for CO2 consumption was determined to be 6.9 kcal/mol from the CO2 disappearance rates. The partial reaction orders, determined from the CO2 disappearance rates measured at various PCO2's and PCH4's at 600 °C, were determined to be 0.33 for CH4 and 0.63 for CO2, respectively. Kinetic data obtained in these measurements were compared with previous works and were discussed to construct a catalytic reaction mechanism for the CO2-CH4 reaction over Ni/silicon wafer at low pressures.
Page
1295 - 1300
Full Text
PDF