Current time in Korea 10:00 Apr 26 (Fri) Year 2024 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 28, Number 8
BKCSDE 28(8)
August 20, 2007 

 
Title
Aminolyses of Y-substituted Phenyl 2-Furoates and Cinnamates: Effect of Nonleaving Group Substituent on Reactivity and Mechanism
Author
Ik-Hwan Um*, Kalsoom Akhtar, Youn-Min Park, Sher Bahadar Khan
Keywords
Aminolysis, Brønsted-type plot, Rate-determining step, Concerted mechanism, Stepwise mechanism.
Abstract
Second-order rate constants (kN) have been determined spectrophotometrically for reactions of Y-substituted phenyl 2-furoates (1a-h) with piperidine and morpholine in 80 mol % H2O/20 mol % DMSO at 25.0 ± 0.1 oC. The Brønsted-type plot exhibits a downward curvature for the reactions with strongly basic piperidine but is linear for the reactions with weakly basic morpholine. The slope of the curved Brønsted-type plot changes from -1.25 to ?0.28 as the pKa of the conjugate acid of the leaving aryloxides decreases. The pKa at the center of the Brønsted curvature, defined as pKa°, was determined to be 6.4. The aminolysis of 1a-h has been concluded to proceed through a stepwise mechanism on the basis of the curved Brønsted-type plot. The reactions of Ysubstituted phenyl cinnamates (2a-g) with piperidine resulted in a curved Brønsted-type plot with a pKa° values of 6.4. However, the curved Brønsted-type plot has been suggested to be not due to a change in the RDS but due to a normal Hammond effect of a concerted mechanism, since the Brønsted-type plot for the corresponding reactions with morpholine results in also a curved Brønsted-type plot with a pKa° values of 6.1. The furoates with a basic leaving group (i.e., 1b-g) are less reactive than the corresponding cinnamates (i.e., 2b-g). The k2/ k-1 ratios for the reactions of 1b-h are much smaller than unity, which has been suggested to be responsible for their low reactivity.
Page
1353 - 1357
Full Text
PDF