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Abstract. By use of an Integral Hellmann-Feynman formula, the cubic crystal field splitting
10 Dg in KNiF; is calculated from first principles. Numerical values of covalency parameters and
necessary integrals are quoted from Sugano and Shulman. The result, 7100cm™!, is in excellent
agreement with the observed value, 7250 cm~1 It is found that higher order perturbation energy
correction is of the same order of magnitude as 10 Dg itself and is, therefore, essential in calcul-
ating 10 Dqg from first principles. It is also found that the point charge potential is the dominant
part of the crystal field potential.

Introdncti resonance, for example. To establish the vali-
1. Introduction dity of the theory, the need for the calculation”

The Bethe! and Van Vleck? crystal field the- of the crystal field splitting 10 Dg from first

ory has been successfully applied to the inter- principles appeared demanding. Several attem-
pretation of a wide range of experimental data pts have been made to calculate 10 Dg in chrome
such as optical absorbance and paramagnetic alum from first principles in the framework of
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jonic model. Though first attempts seemed su-
<cessful, %4 it soon turned out that serious diffi-
«culties were involved in the problem as long as
ionic model was retained. 58

An essential turning point was made by Su-
:gano and Shulman (henceforth denoted as S &
S) who, supported by NMR data of covalency®
and optical spectral®, performed a molecular
corbital calculation from first principles of both
10 Dgand the LCAO wave functions in KNiFs. !
‘They obtained excellent numerical value of 10
Dg, but later their calculation was criticized
both by Watson and Freeman!? and by Siminek
and Sroubek. 13

Several other molecular orbital caleulations
have been performed on the same molecule.
14~18 Hubbard et. al.!” undertook configuration
interaction approach to explain weak covalency
in transition metal salts including KNiFs;. All
these attempts gave results much smaller than
the observed value.

We focus our attention on the fact that the
conventional crystal field theory has been confi-
ned to the calculation of the first order pertu-
rbation energies. We have at hand an Integral
Hellmann-Feynman formula of degenerate case
recently elucidated by the present authors.® It
enables us to calculate 4E, the energy change
accompanied by a perturbation in Hamiltonian
4H, including higher order perturbation ener-
gies when the zeroth state is degenerate as long
as the final state wave function is available.

We take, following S&S,

molecular orbital of [NiFz]?~ molecule which

the antibonding

is a linear combination of the Ni?* and F-
Hartree-Fock atomic orbitals as our final state
wave function. Numerical values of covalency
parameters and necessary integrals are quoted
from S&S IIL. ! It is shown that the total
higher than
second order, in the calculation of 10Dg in

perturbation energy correction,

KNiF; is of the same order of magnitude as the
value of 10 Dg itself and is, therefore, essential
in obtaining reasonable value of 10 Dg. It is
also found that the point charge model gives
excellent value of 10 Dq if higher order energy
is included by means of the Integral Hellmann-

Feynman formula of degenerate case.

2. Formulation

A. Zeroth State Hamiltonian. The zeroth
state of the [NiFg)*~ molecule is represented
by non-interacting Ni%* ion and six octahedrally
coordinated F~ ions. The zeroth state Hamilt-

onian is written as

H=HM(1~8) + H® (9~16) + H

(17~24) <-4+ HVP (49~56) 2.1

where

H=3 (= L4 V) +3L86) @2

g@j)=1/r; (2.3)

VM () =potential due to the nucleus plus
(15)2(25)2(2p)6(35)2(3p)® core el-
ectrons of Ni®* acting on the i-th

3d electron of the Ni%t 2.4)

56

H(VDZZ(—‘%Ai—’_ V(VI) (t) +%?;§ (1]))

=49

(2.5)

VD ({) =potential due to the nucleus plus
(1s)2 core electrons of the 6-th
ligand F~ acting on the i—th va-
lence electron of the same F~ (2. 6)

Obviously, subscript M stands for the metal ion
and the Roman numbers I~VI stand for the
ligand numbering.

B. Perturbed State Hamiltonian.
picture, the zeroth state is perturbed in two

In our

separate steps. Ligand-ligand interactions repre-
sented by 4H* are considered first. Metal-ligand
interactions represented by A4HZ® are applied
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‘hereafter. The perturbed state Hamiltonian

is written as

H=H AHA+AH? 2.7
‘where
AHA ::'Z=:l ;ZN M( V(N) (Z) + %JZE:Ng (z])> (2. 8)

A =g Y+ B0 +3, 36
2.9

“Thus, we have
- 56 ; 1 oy v oy 1

> g

(2.10)

~

:Spin-orbit coupling and other small perturbations
are neglected. Let us say that the system is in
the intermediate state when 4H?* alone is app-
lied to the zeroth state and in the final state
‘when 4H? is applied hereafter.

C. Application of the integral Hellmann-
Feynman Formula. Let us suppose that the

following Schrodinger equations are satisfied

-exactly,
HO¢0= E'g® (2.11)
(HY—-4HA)¢'=E'®’ (2.12)
(H°+ AHA+ AHB) W =E¥ (2.13)

@, @', and ¥ are the zeroth state, the interm-
ediate state, and the final state wave functions
respectively. Then, making use of the Integral
Hellmann-Feynman formula, eq. (13) of ref.17,

‘we can write

AE=E—F°

=(E—E)+(E'—E)

_ o' |4HB|¥) | {P°|4HA|0")

R @0
(2.14)

Now, let us suppose that the zeroth state is g—
fold degenerate, and that the degeneracy is
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maintained to the intermediate state, that is,

E10:E20:E30:"':Eg0 (2. 15)

and

E1,=E2,:E3,:'":E§, (2- 16)

Then, for the energy difference of two config-

urations, a and 3, in the final state, we have

Eg—E,=dEs" —dE.” (2.17)
where

AEg" =FEg—Eg’ (2.18)
and

4E.))'=E,—E,/ (2.19)

In the light of the Integral Hellmann-Feynman

formula, eq. (2.17) can be written as

e COF\AHP T (0| AHP|UD
R AT T

(2. 20)

Let us consider the implications of eq. (2.20).
The g—fold degenerate space in egs. (2. 15) and
(2.16) represents the 3d energy state of the
Ni?* both in the zeroth state and in the inter-
mediate state. It is obvious that 4HA alone will
not affect the 3d energy level of the free Ni2*.
Hence, 4H? alone appears in eq. (2.20). Ano-
ther point to mention is that previous calculat-
ions of 10Dg have been concerned with the
direct evaluation of the difference between the
energy of the ground state configuration and
that of the excited state configuration. But, our
approach as shown in eq. (2. 20) appears totally
different.

D. Wave Functions. Since numerical values
of covalency parameters and necessary integrals
are quoted from S &S III,
functions used by S &S will be considered rel-
evant. The normalized radial part of the Ni%**

3d function, taken, from Watson’s tablel®, is

the same orbital
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Ray (r) =r2(3. 4096¢2-3157 4 45, 951 ¢~4-523r
+129. 48¢78-5027 .94, (7] 15-0i)
(2.21)

Then, the atomic 4 functions with appropriate
symmetry are given as follows:

u=Y(2,0) Ry,

v=(1/v2)(Y(2,2) +Y (2, —2)] Ry,

E=0E/V2)YQ1)+Y(©Q —1))Ry,

p=(—1v2)(Y(2,1)—Y(2, —~1)) Ry,

{=(—i/vV2)(Y(2,2)—Y(2, —2)) Ry,
(2.22)

where Y(Im) is a spherical harmonic defined
as Y(Im)=0(m)®(m) in Condon and Shortle-
v2,

Froese’s numerical values® of F- radial fun-
ctions from her Hartree-Fock calculation were
fitted by S &S to a two-term analytical function:

Rop(r) =7 (15. 671e 37347+ 1, 5742¢71-3584r)

(2.23)

The complete F~ 2p functions are
¢2p0=Y (1, 0) Ry, (2. 24)
P2p::= Y (1, 1Ry, (2.25)

For the 25 function, S &S used the Slater fun-
ction orthogonalized to the 1s- core function:

R (r)=(—11. 156¢"8-70+10. 805¢~2-425)
(2.26)

The complete 25 function is

P2g=(47) "V Ry, (2.27)

Symmetry adapted ligand MO’s are given in
Appendix I where subscript i of the ligand
atomic orbital denotes the ligand position whose
numbering is shown in Fig. 1. Atomic d orbi-
tals given by eq. (2.22) and the ligand MO’s
of corresponding symmetry type given in Ap-
pendix I are combined to give MO’s for the
(NiF¢)*~ molecule, which are given in Appen-
dix IL

Fig. 1. Coordinates used to describe the regular oct-
ahedron of F~ ions which are numbered 1-6.

E. Evaluation of the Matrix Elements.
Let a and $ represent the final ground state:
final.
excited state configuration (&.'9.'C 'us’v.’) res-

configuration (£.'7-'C+'uy’vy’) and the

pectively. In order to facilitate the evaluation.
of matrix elements, the orbitals to accomodate-

i‘123456789 10 11 12 13 14

’15 16 17 18 19 20 21 22 23 24 25

—_ —_— JR— JR— JR— — .
‘Pﬂs $0: pay S0 pos pr, pms Ppry S6, P pry

| b’ 507 poy’ o)’ o’ Brd’ pm BRS

26 27 28 29 30 31 32 33 34 35 36 37

bry pry S04 poy Py 505 Pos Prs s0s Ppog Prg Prre
” ” ”

38 39 40 41 42 43 44 45 46 47 48 49

by Prie sS04 POy Py Pry PRy S0, poy Py sos bog
” " ”

|50 51 52 53 54 55 56

! by 504 Prg PTe P70 PT1 PTas
i
| ”

(2.28)
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the 56 valence electrons of the [NiF¢} ¢ molecule
t.1 the intermeajate state and the final state are
denoted by ¢: and ¢; respectively as follows:
¢, the final excited state wave function, is
Orbitals
1 through 8 are antibonding orbitals, 9 through

22 bonding orbitals, and 23 through 56 non-

obtained by replacing & in ¢; by v’

7

bonding orbitals. For non-bonding orbitals, ¢;’s
are the same as the corresponding ¢;s’ because
no mixing occurs between the central metal
orbitals and the ligand orbitals. Then, ¢’ and

¥ can be written as following:

1
V=g 1/48' [01(1) $2(2)++62(T)55(8) | -
| 50(9)G10(10) <0055 (55) ¢s6(56) | (2. 29)
F = 1 (D¢a(2)+¢55(55)¢35(56) |

(2.30)

Using determinantal functions egs. (2. 29) and
(2.30) for the intermediate and the final state
respectively and employing 4H® given by eq.
(2.9),
Appendix HI),

we get, after some manipulation(see

the following:

{¢' | 4HE|T>

RCAD
=33 )Tl VeB)
+§9<¢! U, —Kp) 1))

+§;9<¢1|¢1>_1<€51| VD¢ (2.31)

AE'=~

where it is noted that

Vi(b)= g;vmue)

=3 s =8
- Rwrﬂfzm—m

(2.32)

The first term in eq. (2.32) is nothing more
V.#, and the

rest is a part of Kleiner's correction.® J; and

than the point charge potential,

K, are the Coulomb and the exchange int:raction
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operators respectively defined by

Ji= [dep (25128 (2.33)

and

Klzfdrgél*(2)g(12)¢‘t(1)P12 (2.34)

In the derivation of eq. (2.31), terms higher
than second order are neglected. It is noted that
the last term in eg. (2.31) is independent of
the & or B configuration of the final state. Fol-
lowing the conventional definition of 10 Dg and

utilizing eqgs. (2.20) and (2.31), we have
10 Dg=dE;"" —
=011 Vi Elenl ¢!
(=KD 18— Vo
Seldd UKy (2.35)

AE.,”

3. Calculation of 10 Dg.

Numerical values of covalency parameters and
necessary integrals quoted from S &S III!! are
given in Table1l. The calculation is made in.
three steps, each step being characterized by
the crystal field potential employed.

Step 1. By Use of Point Charge Potential.

In a position to check the validity of the
point charge model, it is a good approximation
to write
@ Vel _ LV

alv") (41
<'U| Vit lo—2 503—2.;?03>

(D| T— ASo3— AsPC3)

_ is_l_bdfls—ﬁ‘ﬁz’fsﬁ
LI L— A pro)

10 Dg=—— =

3.1

V.2 is the point charge potential given by

TN
N=1 l r

(3.2)

Substituting numerical values in Tablel into
eq. (3.1), we obtain 8180 cm™ for 10 Dg which
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Tablel. Numerical values of covalency parameters
and integrals quoted from S & S III.

Covalency parameters Quoted from S&.S III

2 0.113 Table VII
Ay 0. 396

A 0. 249

Ts 0.031

A 0.285

Te 0.173

Normalization factors

N/t 0.968 Eq. (8.2)
Nt 0.988

Integrals

(v|sos) 0. 08143 Table 1
(vlpas) 0.11071

(Clpms) 0. 07556

(0] V¥ |v) 1. 58687 Table 11
ClLve” 10 1. 58055

(| Vi) 1.5327

(4R UAL9) 1. 5490

(| Vi |so5)"™* 0. 058109 Table V
(@ V| pos)’ 0. 070939

@l Vit prs)’ 0. 035267

(@|Vilsay) —0. 00099

(0| Viipos) 0. 05782

{1 Vilpxs) 0. 06244

*Primed integrals are the two-center integrals.

is approximately 10 % larger than the observed
value, 7250 cm™.

Step 2. By Use of Sugano and Shulman
Potential V.

Sugano and Shulman expressed the contri-
bution from the six fluoride ions by V., which
was defined by

VL= VLN+ VLK+ VLE (3 3)

V. ¥ is Kleiner's additional potential due to the
imperfect screening of the ligand nuclear charge

by the ligand electrons, which can be written as
VLK= —8 VL“'}' VLCOulumb (3. 4)

V.E is the exchange-interaction operator intro-

duced by Tanabe and Sugano.® We notice that

{¢:l¢)’s in eq. (2.35) are all close to unity and
approximate 4H% by V,. Thus we have
AL AR ALS
<alo’) <LIE»
_ <0l V,|5—2As05—Apos
8|9~ 2503~ A,p03)
_ VL= 2 pr
<CIC—-'21P”9>
Numerical values are again substituted into eq.
(3.5) to give 6940 cm™! for 10 Dg which is only
4 % less than the observed value.
Step 3. By Means of Eq. (2.35).
If we let S represent the average value of the

10 Dg= <

(3.5)

48 overlap integrals, namely {¢,|¢,)’s, eq. (2.
35) can be approximated to give

10 Dg=(319') o] Vo+$ 133/~ K |27
~ QYL Vo+SIE - KD
(3.6)
Combining eqs. (2. 33), (2.34), (3.3) and (3.4),

we can make the following approximation:

Ii{Jl —K)=V,+TV, (3.7)

Combining egs. (3.6) and (3.7) and rearrangi-
ng, we get

10 Dg=(5| %"y "3]SV, +7(S) V| 5>
— I ECSIVLATS D) Vi)

(3.8)
We define V.M as following:
V=81V, +7(S1—-1) V. 3.9
Then, we can write
~ @V e VAT
0 P="g17) gy 310
The value of S, 0.99753, is readily calculated
from numerical values in Table 1. Egq.(3.8)

gives, after substituting necessary values in
Table 1 and S, 7100cm™! for 10 Dg which is
in excellent agreement with the observed value,

Journal of the Korean Chemical Society.
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iEnergy in a.u.

Step | Step 2 Step 3
.65
eg*
\
1004=8180 cm-!
160} t29% .
[—rﬁeq
1390 cm- ,ICDQ=694OC'T1'|
:
=560 cm-!
o
.55~
-2580 cm~!
]

l

cm™!, is more than twice as large as
that for z,.* orbital, 4670cm™1.

et the resulting value of 10 Dg,

Hence,
when

0547 7100 el higher order correction is included, is

8180 cm™.

When V;, Sugano and Shulman po-
tential, is used, it is found that energy
level of e;* orbital is lower than that
of it* orbital if the calculation is
restricted to the first order. This gives

negative value, —3580 cm™!, for 10

First orger Higher order Firs® crder Higher order first srder Higher crder
included

only incluced orly inctuded only

Fig. 2. Energy-level diagram showing the higher
order energy effect on 10 Dg in KNiF,

7250 cm™L

4. Discussion

It is important to notice that the conventional
«crystal field theory has been confined to the

-calculation of the first order perturbation energy
of {(D|V|®) type, where @ is the zeroth state
(not to be confused with the definition of zeroth
state in Section 2. A) wave function and Vis
the crystal field potential. Our starting equation
(2.20) is quite analogous to the first order
perturbation energy equation except that the
final state wave function is used on the right
hand side of the in tegrals and that JH? con-
tains metal-ligand interactions. It is our belief
that using the final state wave function on the
right hand side is equivalent to including hig-
her order perturbation energies. Effect of higher
order energy correction, which is defined by

AE =097 a| V1[0 = (8| Vi | D)ete. (4.1)

on 10 Dq is shownin Table 2. The situation is
more visually presented in Fig. 2.

When point charge model is used, first order
calculation gives 1390 cm™! for 10 Dg which is
too small even though of correct sign. Higher

order energy correction for e;* orbital, 11480

WVol. 17, No.6, 1973

Dg which is unrealistic. But when hig-
her order energy is included, this error is cor-
rected. Higher order correction for e;* orbital,
13560 cm™!, is more than four times as large
as that for #p, orbital, 3050 cm~!. The wrong
sign is corrected and an excellent value of 6940
cm™! is obtained.

The situation is similar when V¥ defined by
eq. (3.9) is used. Higher order correction for
e;* orbital, 13800 cm™!, is again more than four
times as large as that for ¢5 orbital, 3120 cm™1.
This gives 7100 cm™! which is only 2 % less
than the observed value.

It is striking to notice that the three values
calculated in Steps 1,2, and 3 of increasing
scrutiny show increasing agreement with exp-
erimental value. This can be regarded as a
justification of the validity of our approach.
Furthermore, the value obtained in Step 1, 8180
c¢cm™!, which is the least favorable one in our
calculation is only 10 % larger than the true
value.

Another important point to mention is that
higher order energy corrections are of the order
of magnitude of 10 Dgq itself. This enables the
inversion of energy levels in Step 2 and Step 3
whereby correcting the wrong sign and giving

" good results.

A comparison is made of the calculated value
of 10Dq in KNiF; by several authors in Table 3.
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Table 2. Effect of higher order energy correction in atomic unit

Step 1 Step 2 Step 3
(B VLB 1. 5869 G Vo |5) 1.5327 a| Vi BBy 1. 5639
@l o Vo) 1.6392 @Ko | V18 1. 5945 Bl o ViH 8 1. 6268
Higher order correction 0.0523 Higher order correction 0.0618 Higher order correction 0. 0629
v 1.5806 &IVl 1. 5490 CIvo 1. 5802
1T LIV 1.6019 &I EIVLITy 1. 5629 EIEHTTE| VLY 1.5944

Higher order correction 0.0213

Higher order correction 0.0139

Higher order correction 0. 0142

10 Dg

First order only 0. 0063

(1390 cm™?)

Higher order included 0.0373
(8180 cm™)

—0. 0163 —0. 0162
(—3580 cm™) (—3560 cm™)
0. 0316 0. 0324

(6940 cm™) (7100 cm™)

This unambiguously shows the superiority of the

present Integral Hellmann-Feynman approach.

5. Conclasion

Two important conclusions are reached. Fir-
stly, higher order perturbation energy correction
is essential in the calculation of 10 Dg from
first principles, This correction has the same
order of magnitude as that of 10 Dg itself.
Secondly, the point charge model gives excell-
ent result as long as higher order energy corr-
ection is made.

We have to point out that the Integral Hell-
(2.20), cannot
provide a means of obtaining the final state

mann-Feynman formula, eq.

wave function though it has the merit of intr-
oducing higher order perturbation energies. It

seems most desirable to use the symmetry ada-

Table 3. Comparison of calculated values of 10 Dg in.

KNiF,

Sugano, Shulman 1963 6350 cm™
Watson, Freeman 1964 2815
Sugano, Tanabe 1965 2580
Hubbard, Rimmer, Hopgood 1966 5400
Offenhartz 1967 4040
Gladney, Veillard 1969 4670
Present calculation

Step 1 8180

Step 2 6940

Step 3 7100
Experimental value 7250 cm™!

pted molecular orbitals for the complex molecule-
where the component atomic orbitals are Hart-
ree-Fock solutions for the corresponding metal.

and ligand atoms or ions.

Appendiz 1. Central metal orbitals and ligand MO’s corresponding symmetry

Central metal orbital

Symmetry adapted ligand MO*

a, $=3s

€, u=3d.a

1 , ,
s = (01,5 Ca s F 05 H 04, 65 H 00 )
1
Pa'xfj—g(—%.z“%. y @3, et Gt 2T Py T Ps, 2

1
50'2£‘7ﬁ(“¢1, s, 5203, s~ Pa, s 05,5206, s

1
PU25'7:1'—5(¢1, 2T 025203, s —Cus s, v+ 206, =)

Journal of the Korean Chemical Society
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v=3d,"_,* 3535% (1,5 P2, sH 04, s—Cs,5)
PGBE%—(—<m.z+¢2.y+r;4,x—,fs,y)
£, PmE%(9"/2.:—993,y—¢5.z+¢e,y)
P (= Puat Poe s 2)
Pfaizl (61, y—F2 sy Cs.2)
25 a=3p, 86457% (01,7 —~Pus)
P0'4571f(—¢1,z"¢4.1>
PTNE%(¢2,1+(P3.:+‘F5,1+{Pe.1)
b=3p, 5055’1’% (¢2,:—0s,5)
PUSET/I?(_¢2J_¢SJ')
b= (Pr5+ eyt nstea)
c=3p, 35657%((;3.:"(55':)
PUGEVIf(_‘Pa.z“?s,z)
7= (Prstfa et Pt
(273 £=3dy. Pﬁz%(¢2.z+¢s,y_9°5.z_"?'s,y)
71=38d,, PﬂsE%((;1,:+¢3,1—su,z—c:e.x)
{=3d,y Pﬁgzél—(r'l,w'-rfz,z—w,y—fps,z)
L2 Pmoz%(—w.x-l-%.r—rﬁs.z—ws.z)
PﬁuE%(—wl,y—i—%.y—m,y—!—rps.y)
lefi%(—¢1.2+¢2,z~¢4,z+¢5.z)
%o onm iy and ¢, represent the 25, 2p,, 2py, and 2p, orbital of the i~th ligand atom respectively.

Appendiz11. Symmetry adapted MO's for the
[NiFg)*~ complex

20/ =N."""V2(pa,~ 7,04 75:505)
P‘T7,=Nl,—1/2(P:7+7’»E)

Antibonding orbitals

W =N,V (u—2A;50,— Asp52) (A 11-1)
v’ =N, V?(v—2,563— A, p03)
§'=N,V*E—2:prr)
7/ =Ny 2eprs)
{'=N,"V2({—2:ps)
‘Bonding orbitals
sos' =N, (50, 1+ 700005) (A 1I-2)

5oy’ =N,/ "2 (so3+ 70+ 7.003)
po’ =N," 12 (poyt7,ut75505)

Vol. 17, No.6, 1973

prg’=N/"17" (P:8+Tx77)
P =N/ (P70

Orbitals with down spin are obtained by accomod-

ating down spin upon the component orbitals.

Appendiz 111, Derivation of eq. (2.31)

We start from a simple case as an illustration. Let

us consider the evaluation of matrix element of the

following type:
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I= [ [ 168 15 B4, 06,(5) 1+
B0G) 19 (Dea (2l drsdeydy
[ T OE 16, @ ()|
019 D¢ (8) [dedeyende,
R T R ORI DI TROTXATRONE

06) J s (D9 +(5) |desdeend,
(A TII-1)

If we interchange the electron tags 1 and 2, the

second term in eq. (A III-1) becomes
a1 7t @6 16,6 1+
T06) 9 @Da (1) 5 (5) | desdes sy
[ [ 5 T D@ 15 AW ) *
EQ(;) 1/—1911(1)‘/2(2) @5 (B) |dz1dry-des
Then we have
1= [ b (164 (@) 8,5, 05,5 | *

29(1) ‘/~l¢'1(1)w(2) 5 (5) |dridrydrs
(A III-2)

By expanding the remaining determinant in the same

manner as above, we get

O ] B S PR O YRR R

igﬁlﬂ(i) [¢:(1)¢2(2) ¢ (5) | dT1d7ye--drs

o s PGV A B PRI OBWAIC)

TG D (2) 4 () drdeyedry)
o RATIOESIRALOTT
LA oy A

R CALTOINICA U DR CALI DAL TN
[CATNICAT ) [CATAICAT S

+higher terms] (4 1II-3)

LB

SR

It is easily seen that terms after the second one are

either zero or negligibly small. Hence, we can write
T g7 22 (6,100
I— ‘/2 3! JI] <¢;l<ﬂ;>[ 011 Q( )l‘/—’1>

+MM>_] (A III-4)

<¢1 |€J >
<¢z|<ﬂz>
Using the same technique as employed in the deriva-
tion of eq. (A4 III-4), we can evaluate the matrix

elements of our concern. For the overlap integral,

we have
S=(@" ¥
8! 48! 2 <¢1W)9>_<M>_
-/ b T (1= e 08

+higher terms (A 1II-5)

It is easily shown that the quantity in the bracket is

very close to unity. Hence, we have

S= /8! 8! 48! =

56! 4]] <¢]19’1>

(A 11I-6)

Now, let us partition 4E"” in eq. (2.31) into three

parts as following:
SAPIRCENL PN | & V¥ D1T)
S S

4E"=

PNE T glnle)
+ 1EM 'TSM =R1+R2+R3

(A III-7)
In the light of eq. (A III-4) and (AIII-6) we have
RN AR
=1 Ldulgw

$ol VM) Ly
s <hlep

(A II1-8)

Y
Ms

(A III-9y

2=

i

=3

k=1

X107 07 (6 §drag (12)9%(2)

3

B 1g0— 5 Al Kl gl fde
g (12)¢:*(2)¢u (1) P1;1¢) +higher terms
(A TI-10)

(2.83) and (2.34) and

neglecting higher terms, we have

Using the definition of egs.

Ro= 3 <&l £ @ulod 1ol Tl
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By
eq.

S

=

10.

11.

Integral Hellmann-Feynman Approacho] 2]t KNiF39]

~Sxaled i Kilgp) (4 T-11)

use of egs. (A 111-8), (4 1II-9), and (A I11-11),
(2.31) is readily obtained from eq. (A II-7).

References

H. Bethe, Anan. Physik, 3, 133 (1929).

J.H. Van Vleck, Phys. Rev., 41, 208 (1932).
J.H. Van Vleck, J. Chem. Phys., 7, 72(1939).
D. Polder, Physica, 9, 709(1942).

W. H. Kleiner, J. Chem. Phys., 20, 1784(1952).
Y. Tanabe and S. Sugano, J. Phys. Soc. Japan,
11, 864(1956).

J. C. Phillips, Phys. Chem. Solids, 11, 26(1959).
A.]. Freeman and R.E. Watson, Phys. Rev.,
120, 1254(1960).

R.G. Shulman and S. Sugano, Phys. Rev., 130,
506(1963).

K. Knox, R.G. Shulman, and S. Sugano, Phys.
Rev., 134, 512(1963).

S. Sugano and R.G. Shulman, Phys. Rev., 130,

Vol. 17, No.6, 1973

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Cubic Crystal Field Splitting 10Dg®] #A 4% 405
517(1963).
R.E. Watson and A.]J. Freeman, Phys. Rev.,

134, 1526(1964).

E. Zimanek and Z. Sroubek, Phys. Status Soli-
di, 4, 251(1964).

S. Sugano and Y. Tanabe, J. Phys. Soc. Japan,
20, 1155(1965).
P. Q. Offenhartz,
(1967).

H.M. Gladney and A. Veillard, Phys. Rev.,
180, 385(1969).

J. Hubbard, D.E. Rimmer, and F.R.A. Hopg-
ood, Proc. Phys. Soc. (London) 88, 13(1966)
H. Kim, H.J. Kim, and U.R. Kim, J. Korean
Chem. Soc., 17, 332(1973).

R.E. Watson, Phys. Rev., 118, 1036(1960)
E.U. Condon and G.H. Shortley, The Theory
of Atomic Spectra, Cambridge University Press,
New York, 1953.
C. Froese, Proc.
206(1957).

J. Chem. Phys., 47, 2951

Cambridge Phil. Soc., 53,



