Journal Information

Article Information


1D-Coordination Polymer Formed by Structural Conversion of an Oxazolidine Ligand in Reaction with the Copper(II) Halides


Expand AllCollapse All

Crystal data

C12H8CuN2O4 Z = 1
Mr = 307.75 F(000) = 155.00
Triclinic, P¯1 Dx = 1.873 Mg m-3
a = 5.1544 (11) Å Mo Kα radiation, λ = 0.71075 Å
b = 7.619 (2) Å Cell parameters from 673 reflections
c = 8.093 (3) Å θ = 2.7–31.1°
α = 66.79 (3)° μ = 2.01 mm-1
β = 73.86 (2)° T = 173 K
γ = 71.63 (2)° Prism, purple
V = 272.87 (15) Å3 0.12 × 0.11 × 0.03 mm

Data collection

Rigaku SCX mini diffractometer 1025 reflections with F2 > 2.0σ (F2)
Detector resolution: 13.653 pixels mm-1 Rint = 0.069
ω scans θmax = 31.9°, θmin = 2.8°
Absorption correction: multi-scan CrysAlisPro 1.171.38.43(Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. h = -7→7
Tmin = 0.373, Tmax = 0.941 k = -11→11
3276 measured reflections l = -11→11
1662 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.090 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.263 H-atom parameters constrained
S = 1.02 w = l/ σ 2 F o 2 + 0.1517 P 2 where  P = F o 2 + 2 F c 2 / 3
1662 reflections (Δ/σ)max < 0.001
88 parameters Δ〉max = 2.16 e Å-3
0 restraints Δ〉min = −1.56 e Å-3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 1.0000 0.5000 0.5000 0.0334 (4)
O2 0.7135 (8) 0.6328 (7) 0.3485 (6) 0.0331 (10)
O3 0.2697 (9) 0.7986 (7) 0.3608 (7) 0.0380 (11)
N1 0.7365 (10) 0.6319 (8) 0.6657 (8) 0.0328 (12)
C1 0.5030 (12) 0.7395 (9) 0.6012 (9) 0.0309 (13)
C2 0.4863 (12) 0.7250 (9) 0.4235 (9) 0.0319 (14)
C4 0.2927 (12) 0.8526 (10) 0.6949 (10) 0.0350 (15)
H4 0.1264 0.9280 0.6488 0.042*
C5 0.3355 (14) 0.8506 (11) 0.8563 (11) 0.0415 (16)
H5 0.1986 0.9283 0.9214 0.050*
C6 0.5738 (15) 0.7376 (12) 0.9242 (11) 0.0433 (17)
H6 0.6026 0.7321 1.0373 0.052*
C7 0.7714 (13) 0.6313 (10) 0.8204 (10) 0.0355 (14)
H7 0.9395 0.5548 0.8637 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0154 (5) 0.0391 (7) 0.0488 (8) 0.0058 (4) -0.0121 (4) -0.0230 (6)
O2 0.0165 (18) 0.037 (2) 0.045 (3) 0.0055 (16) -0.0126 (17) -0.018 (2)
O3 0.0199 (19) 0.040 (3) 0.055 (3) 0.0052 (18) -0.0150 (19) -0.021 (2)
N1 0.017 (2) 0.039 (3) 0.045 (3) 0.000 (2) -0.007 (2) -0.020 (2)
C1 0.017 (2) 0.026 (3) 0.049 (4) -0.002 (2) -0.007 (2) -0.014 (3)
C2 0.018 (2) 0.030 (3) 0.046 (4) 0.000 (2) -0.011 (2) -0.011 (3)
C4 0.017 (2) 0.029 (3) 0.052 (4) 0.000 (2) -0.005 (2) -0.011 (3)
C5 0.030 (3) 0.041 (4) 0.052 (4) -0.007 (3) 0.003 (3) -0.023 (3)
C6 0.032 (3) 0.053 (5) 0.049 (4) -0.010 (3) -0.002 (3) -0.025 (4)
C7 0.024 (3) 0.038 (4) 0.043 (4) -0.005 (2) -0.007 (2) -0.012 (3)

Geometric parameters (Å, º)

Cu1—O2i 1.948 (4) C1—C2 1.513 (10)
Cu1—O2 1.948 (4) C4—C5 1.377 (11)
Cu1—N1 1.960 (5) C4—H4 0.9500
Cu1—N1i 1.960 (5) C5—C6 1.374 (11)
O2—C2 1.287 (8) C5—H5 0.9500
O3—C2 1.231 (7) C6—C7 1.392 (10)
N1—C7 1.312 (9) C6—H6 0.9500
N1—C1 1.335 (8) C7—H7 0.9500
C1—C4 1.401 (9)
O2i—Cu1—O2 180.0 O3—C2—C1 120.7 (5)
O2i—Cu1—N1 96.6 (2) O2—C2—C1 114.3 (5)
O2—Cu1—N1 83.4 (2) C5—C4—C1 117.7 (6)
O2i—Cu1—N1i 83.4 (2) C5—C4—H4 121.2
O2—Cu1—N1i 96.6 (2) C1—C4—H4 121.2
N1—Cu1—N1i 180.0 C6—C5—C4 120.8 (6)
C2—O2—Cu1 114.7 (4) C6—C5—H5 119.6
C7—N1—C1 119.6 (6) C4—C5—H5 119.6
C7—N1—Cu1 127.8 (4) C5—C6—C7 117.2 (7)
C1—N1—Cu1 112.5 (5) C5—C6—H6 121.4
N1—C1—C4 121.6 (6) C7—C6—H6 121.4
N1—C1—C2 114.4 (5) N1—C7—C6 123.1 (6)
C4—C1—C2 124.0 (6) N1—C7—H7 118.4
O3—C2—O2 125.1 (6) C6—C7—H7 118.4
C7—N1—C1—C4 0.0 (10) C4—C1—C2—O2 172.1 (6)
Cu1—N1—C1—C4 -177.1 (5) N1—C1—C4—C5 0.5 (10)
C7—N1—C1—C2 -179.1 (6) C2—C1—C4—C5 179.5 (6)
Cu1—N1—C1—C2 3.8 (7) C1—C4—C5—C6 -1.5 (11)
Cu1—O2—C2—O3 -171.1 (5) C4—C5—C6—C7 2.0 (11)
Cu1—O2—C2—C1 9.4 (7) C1—N1—C7—C6 0.5 (11)
N1—C1—C2—O3 171.6 (6) Cu1—N1—C7—C6 177.1 (5)
C4—C1—C2—O3 -7.5 (10) C5—C6—C7—N1 -1.5 (11)
N1—C1—C2—O2 -8.9 (9)

Symmetry code: (i) -x+2, -y+1, -z+1.

Crystal data

C12H8CuN2O4 Z = 1
Mr = 307.75 F(000) = 155.00
Triclinic, P¯1 Dx = 1.893 Mg m-3
a = 5.1553 (4) Å Mo Kα radiation, λ = 0.71075 Å
b = 7.5399 (14) Å Cell parameters from 2933 reflections
c = 8.0711 (12) Å θ = 2.8–28.0°
α = 66.927 (16)° μ = 2.03 mm-1
β = 73.928 (10)° T = 93 K
γ = 71.883 (11)° Prism, purple
V = 269.98 (8) Å3 0.18 × 0.09 × 0.09 mm

Data collection

Rigaku XtaLAB P200 diffractometer Rint = 0.350
Detector resolution: 5.811 pixels mm-1 θmax = 28.3°, θmin = 2.8°
ω scans h = -6→6
4641 measured reflections k = -9→9
1167 independent reflections l = -10→10
1068 reflections with F2 > 2.0σ(F2)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.119 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.290 H-atom parameters constrained
S = 1.15 w = l/ σ 2 F o 2 + 0.2 P 2 where  P = F o 2 + 2 F c 2 / 3
1167 reflections (Δ/σ)max < 0.001
88 parameters Δ〉max = 2.26 e Å-3
0 restraints Δ〉min = -2.39 e Å-3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 1.0000 0.5000 0.5000 0.0200 (6)
O2 0.7089 (10) 0.6356 (7) 0.3504 (8) 0.0221 (11)
O3 0.2690 (11) 0.8009 (8) 0.3654 (8) 0.0259 (12)
N1 0.7360 (12) 0.6325 (9) 0.6676 (8) 0.0200 (12)
C1 0.5024 (15) 0.7405 (11) 0.6054 (10) 0.0209 (14)
C2 0.4863 (16) 0.7269 (10) 0.4243 (10) 0.0224 (15)
C3 0.2958 (16) 0.8505 (11) 0.6974 (13) 0.0271 (17)
H3 0.1286 0.9243 0.6522 0.032*
C4 0.3412 (15) 0.8499 (11) 0.8625 (12) 0.0253 (16)
H4 0.2045 0.9274 0.9285 0.030*
C5 0.5803 (17) 0.7386 (12 0.9282 (11) 0.0277 (17)
H5 0.6097 0.7345 1.0409 0.033*
C6 0.7792 (15) 0.6316 (11) 0.8246 (11) 0.0227 (15)
H6 0.9489 0.5564 0.8659 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0156 (8) 0.0243 (8) 0.0267 (8) 0.0021 (5) -0.0067 (5) -0.0185 (6)
O2 0.015 (2) 0.026 (3) 0.031 (3) 0.002 (2) -0.009 (2) -0.018 (2)
O3 0.020 (3) 0.032 (3) 0.034 (3) -0.002 (2) -0.009 (2) -0.019 (2)
N1 0.014 (3) 0.027 (3) 0.023 (3) -0.002 (2) -0.001 (2) -0.017 (2)
C1 0.018 (3) 0.023 (3) 0.025 (4) -0.002 (3) -0.004 (3) -0.014 (3)
C2 0.025 (4) 0.021 (3) 0.027 (4) -0.006 (3) -0.003 (3) -0.015 (3)
C3 0.019 (3) 0.022 (3) 0.046 (5) 0.000 (3) -0.008 (3) -0.019 (3)
C4 0.021 (4) 0.023 (3) 0.038 (4) -0.004 (3) -0.002 (3) -0.020 (3)
C5 0.030 (4) 0.036 (4) 0.024 (4) -0.010 (3) 0.000 (3) -0.017 (3)
C6 0.023 (4) 0.022 (3) 0.031 (4) -0.001 (3 -0.004 (3) -0.022 (3)

Geometric parameters (Å, º)

Cu1—O2i 1.959 (5) C1—C2 1.531 (10)
Cu1—O2 1.959 (5) C3—C4 1.413 (12)
Cu1—N1 1.968 (6) C3—H3 0.9500
Cu1—N1i 1.968 (6) C4—C5 1.369 (12)
O2—C2 1.264 (10) C4—H4 0.9500
O3—C2 1.221 (10) C5—C6 1.393 (11)
N1—C1 1.331 (10) C5—H5 0.9500
N1—C6 1.343 (10) C6—H6 0.9500
C1—C3 1.367 (12)
O2i—Cu1—O2 180.0 O3—C2—C1 119.3 (6)
O2i—Cu1—N1 97.4 (2) O2—C2—C1 114.3 (6)
O2—Cu1—N1 82.6 (2) C1—C3—C4 117.3 (7)
O2i—Cu1—N1i 82.6 (2) C1—C3—H3 121.4
O2—Cu1—N1i 97.4 (2) C4—C3—H3 121.4
N1—Cu1—N1i 180.0 (3) C5—C4—C3 120.6 (7)
C2—O2—Cu1 115.5 (5) C5—C4—H4 119.7
C1—N1—C6 120.2 (6) C3—C4—H4 119.7
C1—N1—Cu1 113.1 (5) C4—C5—C6 117.9 (7)
C6—N1—Cu1 126.6 (5) C4—C5—H5 121.0
N1—C1—C3 122.6 (7) C6—C5—H5 121.0
N1—C1—C2 113.7 (6) N1—C6—C5 121.4 (7)
C3—C1—C2 123.7 (7) N1—C6—H6 119.3
O3—C2—O2 126.4 (7) C5—C6—H6 119.3
C6—N1—C1—C3 -1.4 (11) C3—C1—C2—O2 172.7 (6)
Cu1—N1—C1—C3 -177.5 (6) N1—C1—C3—C4 1.5 (11)
C6—N1—C1—C2 179.5 (6) C2—C1—C3—C4 -179.5 (6)
Cu1—N1—C1—C2 3.4 (7) C1—C3—C4—C5 -1.7 (11)
Cu1—O2—C2—O3 -170.7 (6) C3—C4—C5—C6 1.9 (11)
Cu1—O2—C2—C1 8.9 (7) C1—N1—C6—C5 1.6 (11)
N1—C1—C2—O3 171.4 (6) Cu1—N1—C6—C5 177.1 (5)
C3—C1—C2—O3 -7.6 (11) C4—C5—C6—N1 -1.8 (10)
N1—C1—C2—O2 -8.2 (9)

Symmetry code: (i) -x+2, -y+1, -z+1.