Journal of the Korean Chemical Society
Vol. 37, No. 1, 1993
Printed in the Republic of Korea

ZE % E2HE 0|22 X[#E HES20[E A,
CaTl, »-A k=14 ¥ 5.6)F B3t AHFX

S5 - AR - & %
AFdetn Adstetie 2
tEqgsiet shekges)
tudistn Apdsiaiie sheta)
(1992. 8. 22 AH<)

Two Crystal Structures of Dehydrated Ca’*- and TI*-Exchanged
Zeolite A, Ca,Tl; ,-A (x=1.4 and 5.6)

Duk Soo Kim*, Seong Hwan Song*, and Yang Kim?
Department of Chemistry, Cheju National University, Cheju 690-756, Korea
Y Department of Chemical Engineering, Dongseo University, Pusan 616-012, Korea
¥ Department of Chemistry, Pusan National University, Pusan 609-735, Korea
(Received August 22, 1992)

€ o Ca(De} TI(Do =z wEsli s 2EF d" 2749 Aol A A F, CaseTlhs-Al@=
12.242(2) )2} Cay,Tho-A@=12.191(1) A)2) F2Z 21(1) °Coll A BF7HE Pm3m-2 AH4-8hod X-4 =
ez st o5 F AL 2EEE 005ME F CaNOy»9t TINO; E344S AHE-3lo
2o o)gw#ale BRE T Bt 360°C X 2X10 6 torrol| A 24 7F 5ksdt). CaseTlys-A T-Zoll Ae
I>3o(n AAA 179708 AH43sle R =0072¢ R,=0.07671%], CaTheA FZEoAE [>3c() 3HEA
206718 A83}o] Ri=00488} R,=0.043707) A03AZch § T4 Call) ol &2 3742} 6-2 Abze}
AgslA 33 (A4S Aol 1Atk A EG wFY okel&o Fvl 87 el Catt o]
6-8 A2, TI* o] 83 Ao $AHes A3t

ABSTRACT. Two crystal structures of fully dehydrated Ca(Il) and TI(I) exchanged zeolite A, CassTlys-
A (@=12.242(2) A) and CaysTls-A (@=12.191(1) A), have been determined by single-crystal X-ray diffrac-
tion methods in the cubic space group Pm3m at 21(1)°C. All crystals were ion exchanged in flowing
streams of mixed Ca(NOj), and TINO; aqueous solution with total concentration of 0.05M. All crystals
were dehydrated at 360°C under 2X 10 8torr for two days. The structures of the dehydrated CaseTlos-
A and Ca;,Tlg»-A were refined to the final error indicies, R;=0.072 and R,=0.076 with 179 reflections
for I>30(D), and R,=0.048 and R,=0.043 with 226 reflections for I>30(]), respectively. In each structure,
Ca(I) ions are located on threefold axes associated with three 6-ring oxygens. Ca®~ ions prefer to 6-
ring sites and TI1* ions prefer to 8-ring sites when total number of exchanged cations per unit cell
is more than 8.

INTRODUCTION tice. A knowledge about siting of these cations

The selective sorption and catalytic properties within zeolite framework can provide a structural
of zeolites rely heavily upon the kinds of cations, basis for understanding these properties.

their numbers, and their positions within the lat- 12 Na‘* ions of zeolite 4A with stoichiometry
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of NajpAl3Sip04s°27H,0 per unit cell may be ea-
sily exchanged. The exchangeable cations in zeo-
lite A can occupy a site near the center of the
6-ring (B-site), that of the 8-ring (a-site), and that
of the 4-ring (Y-site)!?, The site selectivities of
various cations have been extensively studied®~'°.

In the crystal structure of dehydrated fully Ca
(ID-exchanged zeolite A%, Cas-AM'?, six Ca®* ions
occupy 6-ring sites; the 8-ring and 4-ring sites
are empty. This occurs because the ionic radius
of Ca® is relatively small and the 6-ring sites
are the most stable positions.

Up to present, no structural studies of mixed
cation system of Ca?* and Tl ion exchanged zeo-
lite A have been reported. The site selectivities
for these two ions of substantially different size
and charge would be studied. Zeolite A containing
relatively small and highly charged cations such
as Ca’", and with 8-rings blocked by TI” ions,
might be useful for the storage of small molecules
such as H:.'® A detail knowledge of the structure
of Ca?* and TI' exchanged zeolite A could be
more interesting because this can provide infor-
mation on the pore size of 8-ring and sorption
properties of guest molecules. The present work
is preliminary to later studies of the crystal struc-
tures of Ca,Tly-2-A (0<x<6) treated with H, or
other guest molecules.

EXPERIMENTAL

Crystals of zeolite 4A were prepared by Char-
nell'’s method. Two single crystals, about 0.08
mm on an edge were lodged in fine capillaries.
To prepare Ca?” and T1' ion exchanged zeolite
A crystals, mixed exchange solutions of Ca(NOs),
and TINQO; with a total cocentration of 0.05M
were used. The exchange was then performed by
flow methods using exchange solutions in which
mole ratios of TINO; and Ca(NOs), were 1:100
and 1:1, respectively.

For all crystals, the solution was allowed to flow
past the crystal at a velocity of approximately 1.0
cm/sec for two days at 24(1)°C. Each crystal was
evacuated at 360°C under 2X10 “torr for 48
hours. After cooling to room temperature, each
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crystal, still under vacuum, was sealed in its capil-
lary by torch. Subsequent diffraction experiments
were performed at 21(1)°C. The cubic space group
Pm3m (no systematic absences) was used for rea-
sons discussed previously® V. Preliminary crysta-
Hographic experiments and subsequent data colle-
ction were performed with an automated, four cir-
cle Enraf-Nonius CAD-4 diffractometer equipped
with a graphite monochromator. Mo Ka radiation
was used for all experiments (Ka;, A=0.70930 A;
Koz, A=0.71359 A). The cubic unit cell constants,
as determined by a least-squares refinement of
25 intense reflections for which 18°<20<24° are
12242(2) A and 12191 A for CaseTlos-A and
Ca;4Tlg2-A, respectively.

For each crystal, reflections from two intensity-
equivalent regions of reciprocal space (hkl, h<k<]
and lkh, [<k<h) were examined using the ®-20
scan technique. The data were collected by using
variable scan speeds. The intensities of three ref-
lections in diverse regions of reciprocal space
were recorded after every three hours to monitor
crystal and X-ray source stability. Only small, ran-
dom fluctuations of these check reflections were
noted during the course of data collection. For
eah region of reciprocal space, the intensities of
all lattice points for which 26<70° were collected.

The raw data for each crystal were corrected
for Lorentz and polarization effects, including that
due to incident beam monochromatization; the re-
sultant estimated standard deviations were assi-
nged to each reflection by the computer program
WEIGHT®. An absorption correction (pR=0.11
and p.,=1.644 g/cm® for the crystal of CassTlos-A
and pR=0.89 and p.,;=3.084 g/cm® for the crystal
for Ca; Tly»-A) was judged to be unimportant®®,
and was not applied. Of the 621 pairs of reflec-
tions, only 179 pairs for the crystal of CasgTlys-
A and 226 pairs for the crystal of Ca;,Tlos-A for
which I>3c(l), respectively, were used in subse-
quent structure determination.

STRUCTURE DETERMINATION

Crystal 1 (CaseTly3-A). Full-matrix least-squa-
res refinement was initiated using the atomic pa-
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rameters of the framework atoms [(Si, Al), O(1),
0(2), and O(3)] and a T1* ion at Ti(1) in Ag;Tl;s-
A® and of the Ca?* ion at the Ca(l) in Ca(Il)
and Cs(I) exchanged zeolite A%'. Anisotropic refi-
nement of the framewok atoms and isotropic refi-
nement of T1* at TI(1) and Ca®* ion at Ca(2) con-
verged to Ri1=3%F,—F./YF,=0106 and R,=Cuw
F,—F)*/>XwF,%*=0.103. A subsequent difference
Fourier function revealed a three fold axis peak
at P(0.1387, 0.1387, 0.1387) with a height of 2.7(2)
eA~3. This peak was stable at least-squares refi-
nement. Simultaneous positional, thermal, and oc-
cupancy refinement including this position as Ca
(1) converged R,=0.071 and R,=0.075.

It is easy to distinguish Ca’* from TI* ion for
several reasons. First, their atomic scattering fac-
tors are quite different, 19 ¢~ for Ca’* vs 80 ¢~
for TI*. Secondely, their ionic radii are different,
Ca®*=099A and TI'=147A% Also, the app-
roach distances between those ions and zeolite
oxygens in dehydrated Tli-A” and Cas-A'2 have
been determined and are indicative.

The cupancy numbers of ions per unit cell were
refined to TI(1)=0.79(2), Ca(1)=0.99(9), and Ca(2)
=4.20(10). These were fixed at T1(1)=0.8, Ca(1)=
1.2, and Ca(2)=4.4, respectively, because the cha-
rges of the exchangeable cations should sum to
12 per unit cell and the number of ions on three-
fold axes per unit cell cannot sum to more than
8. The final R values were R;=0.072 and R,=
0.076.

The largest peak on the final difference Fourier
function whose estimated standard deviation is 0.6
eA3 was 33eA% in height and was at origin.
There was no peak on 8-ring sites, indicating ca-
tions were only existed on threefold axis sites
and associated with 6-ring oxygens. Final positio-
nal, thermal, and occupancy parameters are prese-
nted in Table 1, bond lengths and bond angles
are given in Table 2. All shifts in the final cycles
of least-squares refinement were less than 3% of
their corresponding esd’s.

Crystal 2 (Ca;4Tly;-A). Initial full-matrix least-
squares refinement began using the framework
position and the TI(1) position found in the struc-
ture of crystal 1. Anisotropic refinement of the
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Table 2. Selected interatomic distances (A) and ang-

les (degy

Crystal 1 Crystal 2
(Si, AD-OQ1) 1.635(6) 1.641(5)
(Si, AD-O2) 1.63(1) 1.65(2)
(Si, AD-O(3) 1.677(7) 1.680(5)
TI(1)-0@3) 2.778(7) 2.669(5)
TI(2)-0(3) 2.764(9)
TI(3)-0(1) 3.02(1)
TI(3)-0(2) 2.696(9)
Ca(1)-0(3) 2.434) 2.26(1)
Ca(2)-0(3) 2.27(2)
O)-(Si, AD-0O(2) 114.3(7) 107.8(7)
O)-(Si, AD-O(3) 112.9(5) 112.2(4)
0©2)-(5i, AD-0(3) 104.4(4) 107.7(3)
0(3)-(Si, AD-0(3) 107.3(4) 108.9(3)
(Si, AD-O(1)-(Si, AD 150(1) 155(2)
(Si, AD-O(2)-(Si, AD 168.6(7) 151.1(6)
(Si, AD-O(3)-(Si, Al 142.2(6) 139.7(5)
O03)-TID-03) 89.0(3) 90.1(2)
0(3)-T1(2)-0(3) 86.2(2)
0(3)-Ca(1)-0(3) 106.2(4) 113.6(9)
0(3)-Ca(2)-0(3) 118.5(2)
O(1)-TI(3)-02) 55.3(2)

“Numbers in parentheses are estimated standard de-
viations in the units of the significant digit given for
the corresponding value,

framework atoms and isotropic refinement of T1*
at TI(1) converged to R;=0.261 and R,=0.294. A
difference Fourier synthesis revealed large and
distinct peaks at P(0.109, 0.109, 0.109) with a hei-
ght of 12.16(34) eA~3, and P(0.0, 0.443, 0.443) with
a height of 11.30(28) eA-3, Isotropic refinement in-
cluding these TI(2) and TI(3) positions, respecti-
vely, converged to R;=0.141 and R,=0.173. A
subsequent difference synthesis revealed a peak
at P(0.166, 0.166, 0.166) with a height of 1.51(33)
eA 2. This was stable in least-squares refinement
and simultaneous positional, thermal, and occupa-
ncy refinement including this position as Ca(l)
converged to R;=0.048 and R;=0.043.

The final difference Fourier map was feature-
less except an insignificant one at P(0.5, 0.5, 0.5)
with a height of 0.74(29) eA=3 The final results
are shown in Table 1 and 2.

The full-matrix least-squares program used in
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Table 3. Deviation of atoms (&) from the (111) plane
at 0@3)

Crystal 1 Crystal 2
0(2) 0.122(7) 0.130(7)
Ca(l) —0.933(22) —0.583(19)
Ca(2) 0.281(6)
TI(D) 1.632(4) 1.537(1)
TI2) —1.698(19)

A negative deviation indicates that the atom lies on
the same side of the planes as the origin.

all structure determinations minimized Yw(F,—F.)%
the weight(w) of an observation was the recipro-
cal square of o(F,) its standard deviation. Atomic
scattering factors®®?* for Ca**, T1*, O~ and (Si,
A" were used. The function describing (Si,
AD'™* is the mean of the Si% Si**, Al°, and AB*
functions. All scattering factors were modified to

account for the real component (Af) of the ano-

malous dispersion correction®.
See Table 1, 2 and 3 for additional informations,

DISCUSSION

Crystal 1 (Cas¢Tlys-A). In this structure, 5.6
Ca?* ions at Ca(l) and Ca(2) occupy 6-ring sites
on the threefold axes of the unit cell as shown
in Fig.1 and Table 1. The Ca®* ions at Ca(l) and
Ca(2) are 2.434) A and 2.27(2) A from their nea-
rest framework oxygens at O(3), respectively (see
Table 2). The corresponding Ca-O distances in de-
hydrated Cags-A" dre 2.64(2) A and 2.28(1) A, res-
pectively. For comparison, the sum of the conven-
tional radii of Ca®* and 0% is 2.31 A%

To distribute positive charge more uniformly
so as to minimize cation-cation interaction as well
as to neutralize the negative charge of the zeolite
framework, 5.6 Ca®>" ions adopt two nonequivalent
crystallographic sites at Ca(1) and Ca(2). 1.2 Ca*'
jons at Ca(l) are recessed 0.933(2) A into the so-
dalite cavity from the (111) plane at O(3). 4.4 Ca*'
ions at Ca(2) are correspondingly recessed 0.28(6)
A into the large cavity (see Table 3).

0.8 T1* ions at TI(1) lie on the threefold axes
of the unit cell (see Fig.1 and Table 1), recessed
1.632(4) A (see Table 3) into the large cavity from

Fig. 1. A stereoview of the sodalite unit of dehydra-
ted CassTlos-A. About 40% of the sodalite units have
this arrangement. Ellipsoids of 20% probability are
used.

Fig 2. A stereoview of the sodalite unit of dehydra-
ted CaseTlos-A. Another about 40% of the sodalite
units have this arrangement. Ellipsoids of 20% proba-
bility are used.

the (111) plane at O(3). This position is familiar,
having been found in previous work?®. The TI(1)-
0O(3) distance is 2.778(7)10\ (see Table 2). In this
structure, cations occupy only 6-ring sites; the 8-
ring and 4-ring sites are empty.

Considering fractional occupancies, this crystal
can perhaps have three types of unit cells. About
40% of unit cells have 1 Ca’* ijons at Ca(l) and
5 Ca’" ion at Ca(2). Another 40% of unit cells
have 1 Ca®* ions at Ca(l), 4 Ca’* ion at Ca(?),
and 2 TI' ions at T1'(1). The remainder have
2 Ca’’ ions at Ca(l) and 4 Ca®" ions at Ca(2).
A plausible and unique relative arrangement of
the threefold-axis cations is presented in Fig.1
and 2.

Crystal 2 (Ca,4Tly-A). In this structure, 1.4
Ca®* ions at Ca(l) are located on threefold axes
and recessed 0.583(19)13‘ into the sodalite cavity
from the (111) plane at O(3) (Table 3 and Fig. 3).
Each of these Ca*' ions is coordinated to three
0(3) framework oxide ions at 2.26(1) A.

Journal of the Kovean Chemical Society
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Fig. 3. A stereoview of the sodalite unit of dehydra-
ted Ca,Tl2-A. About 60% of the sodalite units have
this arrangement. Ellipsoids of 20% probability are
used.

TI* ions are found at three crystallographic si-
tes, as presented in Table 1. The three T1* ions
at TI(3) are associated with 8-ring oxygens. These
ions are located in the planes of the 8-oxygen
rings, but not at their centers in order to make
favorable approaches to the framework oxygens
(see Table 1 and Fig.4). This position is almost
identical with the corresponding one in dehydra-
ted Tlp-A7, AgeTl-A, and AggTL-A®. The TI(3)-O
(2) distance is 2.696(9);& (see Table 2).

6.2 TI" ions are distributed over two nonequi-
valent threefold axis equipoints. 4.8 Tl* ions at
TI(1) are recessed 1537(1) A into the large cavity
from the O(3) planes of the 6-rings. 1.4 TI* ions
at TI(2) are recessed into the sodalite cavity from
the (111) plane at O(3) (see Table 1 and 3). The
TI(1)-0(3) and T2)-O(3) distances are 2.669(5) A
and 2.76409) A, respectively (see Table 2). For co-
mparison, the sum of the conventional TI* and
0%~ radii is 2.79 A%

The fractional occupancies observed at TI(1),
TI(2), and Ca(1) indicate the existence of approxi-
mately three types of unit cell. For example, about
60% of the unit cells have 5 TI* ions at TI(1),
2 T1* jons at TI(2), and 1 Ca®" ion at Ca(1). About
20% of unit cells have 5 T1* ions at Ti1) and
2 Ca’* ion at Ca(l). The remaining 20% of unit
cells have 4 T1* ions at TI(1), 1 TI" ion at TI(2),
and 2 Ca’®" ions at Ca(l). All unit cells have 3
T1* ions at TI(3).

A comparison of two crystal structures determi-
ned in this work shows that, Ca?* ions prefer 6-
ring sites and T1* ions prefer 8-ring sites when
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Fig. 4. A stereoview of the large cavity of dehydrated
Cay4Tlyo-A is shown using ellipsoids of 20% probabi-
lity.

number of ions per unit cell is more than 8. This
result is reasonable considering ionic radii of T1*
ion (147 A) and that of Ca®* ion (0.99 A). Larger
TI* ion will better fit to larger 8-ring site over
small 6-ring site. But T1* ions prefer 6-ring sites
when number of ions per unit cell is less than
8. In crystal structures of Cd,Rb;s-»-A, x=4.0, 5.0,
and 5.95, Rb* ions prefer 8-ring sites when num-
ber of ions per unit cell is less than 8°. T1* ions
have greater selectivity of ion exchange into zeo-
lite A than Ca’* ions.
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