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ABSTRACT. In this paper application of the projection operator technique to the study of NMR
absorption line shape and free induction decay curve is explored. It is found that the projection
operator technique can provide a convenient means for deriving a set of hierarchy equations which
may serve as a good starting point for theoretical calculation of the absorption line and free induction
decay function by successive approximation or by an appropriate decoupling approximation. A brief
review of linear response theory of NMR line shape and the relation between the absorption line

shape and free induction decay function are also described.

the resonance line and free induction decay
1. INTRODUCTION shape in a paramagnetic spin system. Van
One of the basic problems in the theory of Vleck! has shown that the resonance line shape

magnetic resonance is theoretical prediction of can be expressed in terms of moments of the
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absorption line. However, in reality, mathe-
matical complications prevent us from going
beyond the calculation of the second and fourth
moment,

Lowe and Norberg? have demonstrated that
the free induction decay curve (hereafter, re-
ferred to as the FID curve) is equivalent to the
Fourier transform of the absorption line if cer-
tain conditions are met and have proposed a
theory to calculate the shape of FID curve.
Their theory is based on the time expansion of
FID function @(#) in the form

o 4
D()=3% —5 Fu(®) @
o nl
where F,(¢) is a certain function of time ¢
whose explicit form is given in the original
paper of Lowe and Norberg. The above expan-
sion has actually been obtained by spliiting the
dipolar Hamiltonian into two parts, the Ising
and exchange part. The Lowe-Norberg theory?
was successful to describe the beats observed
experimentally for solid CaF,. But in this case,
too, mathematical difficulty does not give us any
possibiliy to go beyond the fourth-order term.
Since the neglect of higher order terms in the
expansion of @(¢) with respect to ¢ is not justi-
fied, it is also difficult to develop an entire
theory along this line. Clough and McDonald®
reexamined the Lowe-Norberg calculation and
have shown that the series expansion (1)
diverges for large ¢ and tried to curb this
difficulty without much success.

In the meantime Evans and Powles, ¢ using
a Dyson-type expansion, have also obtained a
reasonable agreement with experimental results
for short £. They have claimed that since it
was not a power series expansion of # it could
be used for large z Unfortunately, in their
theory it is also difficult to evaluate beyond the
first two terms and the convergence of the series
used has never been confirmed. Development of
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the theory along other lines also followed.
Tjon®, who also split the dipolar Hamiltonian
into the exchange and Ising part, has proposed
a theory based on quantum statistical mechanics.
By introducing the so-called linearity assumption
he has shown that ¢(t) satisfies the following

integro—differential equation:
d 4 ’ ’ ’
= —_ 2
It o) IOK(t D )de @)

where the kernel K(¢) may be expressed as an
infinite power series of ¢.

On the other hand Mansfield®, adopting the
method of Green’s function developed in the
quanturn field theory, has also arrived at the
same equation as Eq. (2). Yet Borckmans and
Walgraef?, using the theory for the Heisenberg
spin  system developed by Résibois and
De Leener?, have proposed arother theory the
result of which is represented by an equation
similar to that obtained by Tjon.

In the theories developed by Tjon’, Mans-
field®, and Borckmans ard Walgraef”, however,
calculation of the kernel function K(#) remains
a formidable problem. Thus, in actual applica-
tion of their theories they have been forced to
assume a specific form of K(¢). In this paper
we shall demonstrate that the projection oper-
ator method originally devised out by Zwanzig®
and used for the study of infrared and optice!
absorption line shape in solids by Wilsor, King,
and Kim!® and Greer and Rice!! can be used to
derive Eq. (2) in a much simpler manner. Mor-
eover, this method enables us to derive a set
of hierarchy equations which is basic to the
study of kernel function K(z). In fact a similar
projection operator method has been adopted by
Wang and Ramshaw'? to explain the experi-
mentally observed spin echo train in a multiple
Unfortu-
nately, however, their attention has been restrict-

pulse experiment in dipolar solids.

ed to the study of echo train as a function of
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pulse interval and has not been extended to a
more general problem like the NMR line and
FID shape. Furthermore, the projection oper-
ator adopted by Wang and Ramshaw is of
much simpler form compared to the one used
in this paper. Such a simpler form of the pro-
jection operator cannot lead us to a set of
hierarchy equations of K(z).

It goes without saying that the study of FID
function can give us important informations
regarding the spin energy diffusion process
occurring in dipolar solids. Recent develop-
ment of the pulsed Fourier transform NMR
spectroscopy has put further importance on
exploring a systematic way of studying the
line shape and FID function. Before delving
into further detail of the problem the linear
response theory of resonance line shape shall

be briefly reviewed.

2. LINEAR RESPONSE THEORY OF
MAGNETIC RESONANCE ABSORPTION
LINE SHAPE

Suppose a quantum mechanical system de-
scribed by a time-independent Hamiltonian %
is perturbed by an external perturbation &' (¢). If
the system under consideration is a paramagnetic
spin system as in the case of NMR experiments,
then the perturbation H’(t) represents the in-
teraction between the r. f. field and spin system.

In order to avoid transient effects occurring
when the perturbation is first switched on we
assume that the perturbation Z#’'{(z) is adi-
that is, ' (—o0)=0.
After the perturbation is turned on, the system

abatically turned on,

evolves according to the following equation of

motion for the density operator:!3

,g}:,p(t):_%— (H+2 @), p)] (3

with the initial condition

p(—o0)=p, (density operator for equilibrium

ensemble)

___exp(—=&/kT) @)
Triexp(—4/kT)}

where % is the Boltzmann constant and T the
absolute temperature of the system.

In the interaction representation Eq. (3) may
be rewritten in the following form:14

2 sw=-iw, 501
where

BBy ==/t o(a) e ih ®
and

T @) =e=trh G (1) & iassh @

In the linear response scheme the solution of

Eq. (5) is approximated by
s L :

s =p— [ (E @), pdar.  (®)

Suppose now a system consisting of N nuclear

spins of the same species is subjected to a linear-

ly oscillating magnetic field H;(¢) applied along

the z-axis in the laboratory-fixed coordinates.

Then ' (¢) may be written in the following
form:

X' () =—rhIH:(2), ©)

where I, is the z-component of total spin

angular momentum I defined by
J
with I; denoting the spin angular momentum
for the j-th spin in the system and 7y represents
the magnetogyric ratio for the given nuclear
species.
Magnetization vector for the given spin system

may now be defined by
W=7l V 1)

where V is the volume of the spin system under
consideration, Thus the statistical average of
the z-component of 372 at time ¢, M.(¢), can
be given by

Journal of the Korean Chemical Society



NMR Wit =3t sHEps ARz g BRmuTie ER 365

M.(8) = Tr(o(®),) =7% Tr{s (O L)}
(12)
where

j’z (t) — gt/ I, emint/h (13)

and 5(¢) has been previously defined by Eq. (6).
Substitution of Egs. (7), (8) and (9) into Eq.
(12) and a little manipulation can lead us to

the expression

M) =[ 2@ Hi—v)de (14)

where the response function y(7r) is defined by
. 5 5

1@=2r (L@, Loy )

The angular bracket notation in Eq. (15) re-

presents the equilibrium ensemble average.

From Eq. (15) it can be seen that 4(z) is an’’

odd real function of 7, that is,

1(=0)==x() and y*(x)=x(r)  (16)

Let us Fourier-analyze M,(¢) and H,(¢) as
follows.

M, (5) = fl M. (o) ¢ do an

and

H()= j"j Hy(w) e do. (18)
We also introduce the function y(w) defined by

¥ (@) :J‘: ¥ () et dt. (19)
Then, it follows from Egs. (14), (17), (18)
and (19) that

M (w)=y(w) H(o). 20$)

It is obvious from Eq. (20) that x{(w) is the
magnetic susceptibility of the spin system. Also,
Egs. (16) and (19) tell us that

o) =x(—0). (21)

Suppose now a magnetic field linearly oscil-
lating with a particular frequency w is applied

to the spin system. Such a magnetic field can
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be expressed by
H, (¢) = Hy (ef“t 47 iet), 22)

In this case the average power absorbed by the

spin system over one cycle of oscillation is given

by

9=2 Z”"’ Hy () (dM, (1) /de)dt
=—2H*odm(y(w))]. (23)

On the other hand the time-dependent pertur-
bation theory predicts that the total energy
absorbed by the spin system per unit time

is equal to'®
P=nH%0apgf(o) (24)

where the function f(w) represents the shape of
magnetic resonance absorption line and ¥ and
@, are, respectively, the static magnetic suscep-
tibility and Larmor frequency for the given spin
system.
Comparing Eq. (23) with Eq. (24), we obtain
floy=——2—- L gniy(). (25)

Yo @o

Since the resonance absorption always occurs
near w=w,, to a good approximation @, in Eq.
(25) can be replaced by @w. Thus we have

foy==2— 5 dm @) (8)

Then, from Egs. (15), (19), (21) and (26)
we can obtain the following expression for
flo):

7R 1

zVy @

f@)=—
x[" (L@, Lo e @

Consider now the integral appearing in Eq.
(27). By making use of the relation (see the
Appendix)

[ oL@ e

—e T[T 0T, () e dt (28)

—co
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the above integral may be rewritten as

|7 <@, LoD ewar
=(—eom) " LWL (29)

Since %w is much smaller than 2T under con-
ditions of NMR experiments, e*/# and p, can,
respectively, be approximated by 1+#Aw/kT and
(Tr ¢ 2771, Thus from Egs. (27) and (29)

we obtain

N A S
f) =TT

X J' T eI, L),  (30)
where we have used the notation Z to denote
the partition function Tr(e #/4T),

At this stage it will be convenient to split the

spin Hamiltonian & into two parts, the Zeeman
term K, and the remaining part &, that is,

gdzgﬂo—f'gcl, (31)
where &, can be explicitly written as
(gg(]: —honz. (32)

Abragam!’® has shown that in studying the
magnetic resonance line shape we have only to
pay our attention to the case in which &, and
H, commute with each other. Thus, hereafter,
it is assumed that K, and #; commute with
each other. Then the operator I.() can be

explicitly rewritten as
Tx(t>:eizlt/ﬁ e—iw(,l,.qz giwol:t pmiit/h (33)

Now consider a new coordinate system rotating
about the z-axis of the laboratory-fixed coordi-
nate system with the angular velocity w,, as
shown in Fig.1. Let us denote this coordinate

“system by (X, Y, Z) in contrast to the labo-
ratory-fixed coordinates (z, », 2). The z- and
Z-axis always coincide with each other. Suppose
at £=0 two coordinate systems completely coin-
cide with each other. Then it can be shown
that?’

z, 2

| //\Y

Fig.1 Rotating coordinates.

e*iwolztlxeimolzt:IX (34)

where Iy is the X-component of I in the
rotating frame. Let us introduce the operator

It (t)defined by
T5(8) =it/ M gmiae/h (35)
Then Eq. (30) may be rewritten as

T2h2 1
VTZ’xO ZkT

" Triwro)ee s @)

flw)=

As shall be shown in the next section, the term
Tr{IE@) I%(0)} the FID function

obtained in a single pulse experiment. There-

represents

fore, apart from the constant factors in Eq.
(36), we may say that the resonance absorption

line is equivalent to the Fourier transform of
FID {function,

3. FREE INDUCTION DECAY IN A
SINGLE PULSE EXPERIMENT

A nuclear spin system at thermal equilibrium
in the presence of a strong static magnetic field

Journal of the Korean Chemical Society
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can, to a good approximation, be described by
the equilibrium density operator
p;EZ—le—z“/‘T
hap 7
~ 7-1 _ndo .
=71+ L ) (37)
Suppose we now apply a short, intense 90°

pulse along the y-axis to the spin system at
t=0. Then, immediately after the pulse is cut
off, p(#) takes the form

p(0) =@/ D 1y, gite/DI,

=z (14090 1), 88)

After the pulse is turned off, the density

operator for the system evolves according to
the equation

2o ==k oty 0®) (39)
the formal solution of which can be written as
o(t) =g i@t 2t hp(0) g @etane/h
=Z1(1+ Z"I‘)TO eivolstgmizit/ T gmiaoltgirit/ K (40)

Since the amplitude of FID signal is propor-

tional to the instantaneous magnitude of the z-

component of magnetization vector, we may

write apart from the proportionality constant
o) =Tr{p() I} (41)

Substituting Eq. (40) into Eq. (41) and using
Egs. (34) and (35), we may obtain

O(t) e Tr{I% () I%(0)}. (42)

Thus Tr{I$(e)13(0)}
describes the FID function in a single pulse

we have seen that

experiment.

4. APPLICATION OF THE PROJECTION
OPERATOR TECHIQUE TO THE STUDY
OF NMR LINE SHAPE AND FREE
INDUCTION DECAY

From the definition of Iy*(¢) [see Eq. (35)]
we can see that its time evolution is governed
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by the equation
0 ,
2 IO =il Ix* (8 (43)

where the Liouville-type operator £ is defined
by

L=r1[H, 1. (44)
Consecutive operations of .Z thus have the meaning
LrO=B(FHy, [Hy, -+ (Hy, O3y 45)
n times

for any operator 0.
The formal solution of Egq. (43) may be

written in the following form:
Ig* (2) = Ix*(0). (46)

Comparing Eq. (46) with Eq. (35), we see that
the operator ¢ is formally equal to the sand-

wich operator gi®it/A( Ye i#it/k that is,

I* (2) =€ Ix* (0)
— eialt/h IX* (0) e—ia,t/h (47)
We now introduce a set of operators P,’s and

functions f,(z)’s defined by

A_ Trl(L L™ 0)  par s

and

L fLo=TUERe D) )

In the above definitions we have used the abbre-
viated notation Ix* for Ix*(0). We can imme-
diately notice that fy(¢) is proportional to our
FID function @(). In fact fo(t) is the
normalized form of @(¢).

From the definition of P,’s we see that they
are linear operators and commute with time
derivative operator 9/0t. Moreover, they are
idempotent, that is, P,2=P, Therefore the
operators P,’s are the so-called projection
operators.

Consider now an operator 0,(¢) defined by
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On(8) =€ (LmI*). (50)

From the definition of P,’s it is easy to con-
firm that the following relations hold:

P,0,(0) =0,(0)
PnOn (t) :-Q’IIX* n (t>

Pn {‘%On(t)} = ﬁﬂIX*_‘% fﬂ (t) y (51)

ete.

For convenience we will from now on drop the

time symbol from all the operators whenever we.

refer to £=0.

Since for any operator O(z) we may write
O)=P,0(t)+(1—P,0(), (52)
we have from the definition of 0,(z)
P,((0/0t) 04(2) 1=iPpL0,(2)
=i PplP,0,(t)+i P,L(1—P,)0,(t) (53)
and

(1—=P,) ((0/06)0,(8))=i(1—Pn) LO,(t)
:i(l_Pn)—QPuOn(t)
+i(1—P) L1 =P, 0,(2). (54)

Integration of Eq. (54) with respect to time ¢
yields
(1—-P,)0,(t)
=i [ drexpliA-P)L ¢—1))

(1—=P,) LP,0,("), (65)

where we have taken into account the fact that
(1—P,)0,=0.

Substitution of Eq. (55) into (53) and a little

manipulation gives us
d . 4 Y ’ ’ )
/@ —fo K, (t—1") fo(t')dt (56)
where

K,(&)=

Tr{( L+ 1x*) expli(1— P,) L] (1— Pn) L7 Ix*}
Tr{(L1x)?%

(57)

In deriving Eqs. (56) and (57) use has been
made of the fact that

Tr(ALB) =—Tr{(LA)B} (58)
and
Tr{(LrIy*) (L*x*1)} =0 for m+n=0dd. (59)

Eq. (56) tells us that the spin energy diffusion
processes are in general governed by a non-
case n=0 Eq. (56)
reduces to the equation first derived by Tjon®

Markoffian equation. In

for dipolar solids who has split the dipolar
Hamiltonian into the Ising and exchange
part. However, it is clear from our derivation
of Eq.(56) that split of

Hamiltonian into two parts is merely for

the dipolar

convenience and is of no absolute necessity.
In order to derive a set of hierarchyequations
of K,(¢) let us now consider the operator

A, () =expli(1—Pn) L] (1— P,) L Ix*. (60)

The time derivative of A4,(z) may be written as
8/ot A,()=i(1—P)L A,

=ifA,t)—i P, £ A, (61)

Since P,LA,(t)=—L"Ix*K,(¢), we have from
Eq. (61)

_a%_fa,, (&) =iLA,(8) +iL K, () (62)

By operating P,y and 1—P,.; on both sides of
Eq. (62) we have

aitpn+lﬁn (£) =iPp1 LP, 1A, O]

+iPai1 L= Pyyy) A, () (63)

and

(1= Pa) Ay =i(1 Pys) LPrirAn 0
+i(1—'Pn+l)£(1—Pn+l)An(t)
+i0M I * K, (1), (64)
where we have used the relations P, f7Ix*=0

and (1 '—'P,,+1) .Q"I)(* :.inx*.

Jovrnal of the Korean Chemical Society
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Integration of Eq. (64) with respect to time
yields

(1— P A, (0

=i___.____f dt’ i 1= Pai)2(e=2")
n n+l
pn+2 IX*Kn(t )_{_zf dt’ et 1= Payr)2(=2")
0
LrIy* K, (t'), (65)
-where

_ Tr{(en)?)
Dn. ntl _Wj}%}—f}h (66)

‘Substitution of Egq. (65) into Eq. (63) produces
K (t) n ntl

+f0 K,u (t—t’)K,. t)dr', (67)

K,, (") dt'

which is a set of hierarchy equations of K,(¢)’s.
In order to treat coupled equations such as

‘Eq. (67) more elegantly we now introduce the

‘half-interval Fourier transform defined by

F(@:lﬂ@ﬂ F(t)e ot gy, (68)

-where the factor ¢ 7 has been inserted to
-guarantee the convergence of defined integral.

Taking the half-interval Fourier transform of
‘Eq. (56) and Eq. (67), we have

_ 1
Falw)= h ~o io+n—Ra(w) (69)
-and
Kn (a)) =1lim Dn,n+1
0wty + Zﬁ:‘; R, (w) (70)
In particular, for n=0 we may write
—1; 1
folw) ——kr;‘l io+1—Ko(w) (71)
:and
D
&, () =lim 0.1
e 1w+77+ —K (o), (72)

.of which the second equatlon may be rewritten
in the form of an infinite continued fraction as

Hollows:

Vol. 21, No.5, 1977

By(w)= 113){

Dy,
io+7n + iﬁl‘ - DDL? §)
(73)

Such an infinite continued fractional form may
provide us a convenient means of studying the
resonance line shape with the aid of modern

computers.

Earlier investigators®® have been forced to
assume a specific form of Ky(¢) because they
could not derive a set of coupled equations such
as Eq. (67). In our case, however, due to the
presence of Eq. (67) such an assumption can be
introduced at as high a stage as we want.
Moreover, the convergence problems with
respect to time ¢ never arise because K,(#) is
obtained through the solution of integro-dif-
ferential equation such as Eq. (67), not by
expanding into the power series of time ¢.

Even at this stage we can gain some inform-
ations about the resonance absorption line
shape by looking at fy(w). Since fy(£) is an

even real function of time £, we can see that

" A di=2Relfy(@),  (70)

whence the resonance line shape can be studied
by lookinginto the real part of fy(w). Since

from Eq. (71) we may write

Re[ K ()] _
{o—dm[Ky(w)]} 2+ {Re[Kow)]}?

Re[ fo(w))=—

the absorption line peaked about w=w, may be
described by the following function:

Re[fo (0—wp)]
Re(Ry(w—awp)
{ow— wo-dm{Kolw—wpl} 2+ {Re( Kolw—wol}

(75)

In case Ko(w) is independent of w, Eq. (75)
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provides the well known Lorentzian line shape.

We have to remark here that the infinite
continued fractional form of Ky(w) given by
Eq. (73) somewhat resembles a function used by
Kubo!® for stochastic study of the NMR line
shape. However, in deriving Eq. (73) we have
never used any stochastic assumptions and our
equation (73) is strictly exact in this sense.
We also would like to point out that the pro-
jection operator P, reduces to that used by
12 in case #=0. Thus we
of Wang and

Ramshaw is a special case of more general

Wang and Ramshaw
may say that the method

one described in this paper.

In order to apply the theory developed here
to the study of NMR line shape and free induc-
tion decay for an actual spin system we need
the knowledge of #; which will differ for
different systems. In our next paper we will
apply the method developed here to make
theoretical calculation of the FID curve in the

solid CaF, attempted by earlier investigators.

5. CONCLUSION AND DISCUSSION

In this paper we have shown that the projec-
tion operator technique can provide a convenient
means for derivation of a set of hierarchy equations
which is basic to the study of NMR line shape
and free induction decay. These coupled integro-
differential equations are of non-Markoffian
character and may be treated more elegantly by
introducing the half-interval Fourier transform
of f,(#) and K,(¢). It is of no doubt that the
same method as shown in this paper can be
applied to the study of echo train obtained in
multiple pulse experiment without much ado.

APPENDIX

Suppose A(#) and B(0) represent two arbitrary
Heisenberg operators, respectively, for ¢t=¢ and

t=0. From the definition of {(A(¢)B(0)) we
may write

Jw_o (A B0) deiotdt
J\D_o Tr {A (t)B (O) e‘ﬁx} et dy,

(A-1)
where $=1/kT with % being the Boltzmann
constant and 7T the absolute temperature.

=1
Tr(e )

In the representation in which & is diagonal

we may write

f” Tr{A(®#) B(0)e 5%} ¢iotds

=2 |7l A@ In>l BO) ImpetEn it

T (A-2)

where we have noted the quantum mechanical
closure relation

1:3 [ny<{n|=1 (A-2)
and the fact that
e 2| m)=¢ PEmn|m). (A-4)

Using the definition of a Heisenberg operator,
A(t), we obtain

r’ Tr{A() B(0)e P2} e~ivtdy

=2 {m| A(0) [n)<n| B(0) lm)eFEn

XJW e-ivt=iEa—Emt/h gy

—o0

(A-5)
From the definition of Dirac d-function

— 1 = =iz —_
@)= [_m e dy (A-6)

we see that the the integral in (A-5) makes all
the terms in the summation vanish except those

satisfying the relation
W= (Em— En) / h
or

E,=E,+ho. (A-7)

Substitution of (A-7) into (A-5) and inter-
change of the order of summation over dummy
indices # and m lead to

Journal of the Korean Chemical Society
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f °° Tr{A(£) B(0)e 52} e-iotds

= 5" (B [my<ml AG) 1)
e—ﬁE,,,e—i‘mtdt
:e—ahw[_ Tr{B(O)A(t)e P} et dr, (A-8)

which, when combined with (A-1), produces

[ cawB@eio
=eoho [* (B A)Yeidt
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