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ABSTRACT. For the metal complex of d! configuration with the octahedrally coordinated ligands,
the crystal field parameter, 10Dg, is calculated from first principles within the framework of the
crystal field theory. With the point charge model, the configuration interaction is introduced by
use of the Shull-Léwdin functions. Through the Integral Hellmann-Feynman Theorem, the higher
order effect is visualized. It is found that the higer order effect on 10Dgq is about 50% of the first
order effect. Since 34 function is angularly undistorted and radially equally distorted in E, and
Ty, states, due to the octahedral potential, the calculated 10Dg is still the unique parameter for the

splitting.

to express the gaps between any two energy

1. INTRODUCTION
The crystal field theory of Bethe! and Van

levels of the metal ion by a single parameter,

usually denoted by 10Dgq, and it corresponds to

Vleck?, which has been successful in explaining
the magnetic properties and the spectra of the
transition metal complexes, is based on the as-
sumption that the metal ion feels a purely elec-
trostatic field with point group symmetry of the
ligands. According to the theory, it is possible

the radial integral of the first order splitting®.
However, in practice, the integral is replaced
by the empirical value*® Attempts to calculate
10Dg from first principles have led to results
that disagree considerably with the empirically

deduced values”.
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One of the reasons of the failure is that one
can know nothing but the symmetry of the cry-
stal field potential. Therefore, in the theoretical
caleulations, a model of the potential is employed.
The other is that the higher order energy was
not included. Theoretically, the difference of
the first order perturbation energies is parame-
terized, but in practice, this very parameter is
replaced by empirical values which are, by de-
finition, the difference of the sum of the pertur-
bation energies of all order (hereafter we call
total perturbation energy). Therefore, even if
the explicit form of the crystal field potential
can be known, 10Dg cannot be calculated from
the first order energies, as long as the higher
order correction contributes remarkably to the
splitting. If, however, one uses the Integral
Hellmann-Feynman Theorem (IHF)$, the for-
mulations of the first order energy in the classi-
cal crystal field theory can be replaced by that
of the total perturbation energy.

We anzlyzed the calculation of 10Dg of [Ni
Fo)4 by Sugano and Shulman®, which is ess-
entially the SCF MO method and thus employs
relatively explicit potential. We became con-
vinced that at least for that complex, the con-
tribution of the higher order effect is dominant
and that even the sign of 10Dg disagrees with
the empirical value if solely the first order
energy is taken into account®.

One of the purposes of the present work is
to check the higher order effect in the situation
where single d electron is placed in the center
of octahedrally coordinated point charges. From
a logical point of view, the result of the calcu-
lation should merely reflect the defects of the
potential. If IHF is used, the wave functions
obtained from the variational scheme can be
used in the total perturbation energy expression
as if they were the‘perturbation functions. We
employ the set of the Shull-Lowdin functions!,
by which integrals converge very rapidly, as a

common basis set in the zero order and the
perturbed states. The use of a common basis
set guarantees the equality?, <¢|4V|T{p|T>~1
=<TH|T>—-<$|H"¢>, where AV=H-—
H?® and ¢ and ¥ are the variational function
of H® and H, respectively.

The secondary objective of the work is to
examine the nature of the angular and the ra-
dial distortions. The existance of the unique
parameter, 10Dg, depends on the nature of these
distortions, when the configuration interaction

prevails.
2. FORMULATION

Let the Shull-Lowdin functions!? be

(‘Z)nlm:Rnl(r) Ylm(ov @) (1)
where Y,™(6, ) are the spherical harmonics® 1,
and R, (r) are the radial functions defined by

s on o Q% J=I=D)!
RO =Gy Grrrrpr 2
21+2
L .. (2Qr) exp(—Qr) @)

Q is the effective nuclear charge of the metal
ion, and L, (x) are the associated Laguerre

polynomials. Thus,
Ru(n=0CQ* " Vu+i+1)!(n—1—1)! 7"

B n—l;l_‘”L_jA%Q)L#
exp( Q")kgn(n_l_l—kj!(2l+2+k)lk! rt

T a1
EAnl ‘\5_:__—7‘1 Bnlk EXP(—QT) rith (3)
where definitions of A,; and B,* are obvious.
form an orthonormal

These radial functions

complete set, that is,
Jl:Rnl (7') Rn'l’ (7‘) rzdr:5nn' (4‘)

Since the expectation values of the hydrogenic
Hamiltonian increase rapidly as 7 increases,
these functions are also expected to maké other
expectation values converge more rapidly than
the hydrogenic wave functions, which are not

complete until the wave functions for the con-
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tinuum are taken into full account. If the zero

order Hamiltonian!? is

o1y @ ®
and the kinetic energy operator K is
=17 _d a2 dy)
Ki=5 5 1+~ (r = | (6)
then the matrix elements are
Lditm| HO D jprm >
=5lzl5mm'U0 RuKiRyr*dr —QJ.O Rilelrer @)
It can be shown thatlz,

<¢'£lm | HO | ¢jl’m’>

-4 @®)

where E;,I = E:i;tg% and i>j.

Given the zero order Schrodinger equation

H'y=E ¢ 9
one may obtain approximations to ¢, (denoted

by ¢»

(G182, B20) = (Gaar, Paar,*+*Praar, Psgr, *+ Brsgr)
(10
from a limited set of the Shull-Léwdin functions

(¢1,¢2, nee ,szo) = (ﬁbsd', 9”4&"‘ . ,‘ ¢131: 9”52, '¢13g)

(11)
through variation, That is,
20
5&2‘; diip ‘ ‘ (12)

The lowest eigenvalue obtained from the secular
equation is close  approximation to the exact
hydrogenic 34 energy, and the corresponding
eigenvector ¢3; is an approximation to the
hydrogenic 34 wave function. For instance,
when the effective nuclear charge of the metal
the lowest eigenvalue is —0. 55496
X107! a.u., while the exact hydiogenic 3d

ion is 1,
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energy is —0. 555561071 a.u.

able to use the wave functions higher than

We were not

144, due to the loss of the significant figures in
the radial integrals.

If six point charges (ligands) are placed
around the metal ion as in Fig. 1, the
potential'®, 4V, is given by
> Z—»— (13)

=1 | R—T7

4V=
On the other hand,
1 S An rd o
g m AR O ()

Substituting Eq. (14) into Eq. (13),

_ 3 oy 4m J_<L[ﬁ "0, o) -
av= 13 % ol B Y0

Ylm (0r 50)

e v I
=6Viar Y g 5 S

RANEC AR AV
=6/ TR+ oy TRYG - (15)

Let the Schrodinger equation of the perturbed

Z

~

o

T

Fig. 1. Coordinates used to decribe the regular octa-
hedron of the point charges. (metal-ligand distance=R
in a.u., metal charge=@, and ligand charge=2).
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states be

HQ'k:Ek@T,, (16)
with

H=H%+4V an
The eigenvectors, &, can be approximated
with &,

7= z‘:l 3: Bin (18)

The Schrodinger equations for E, and T, are

given by, respectively,

HW{KZE,,‘WQ‘@ (19)
HU 5 =E,/*50 /% (20)

And by the definition of 10Dg,
10Dg=4=E, ¢ —E% 1)
The matrix elements of H are
<3\ H|3;>=<:| H'+4V|8;>
=<§;| H$:>0,;+<:14VIg;> (22)
since §; are diagonal with respect to H°
Taking ¢;=R.’wi.’, then one has
<$:1 AV 3> =6 Van<Ruf| R®| Ry 7>+
Lopn' | 0P| @pmed >
+ T /AR R Ry >
2 9 7 n'l
Lo | &0 0pr > (23)

from Eq. (15). By use of Eq. (12), the inte-

grals of the radial parts may be expressed as
20 20

RAFIRPIRypI>= 2 21 aww ;-
<RulR®|Rpr>  (24)

RIR®| Ry 7> = E:l ‘,Zzi: (CHd
<Rul|R¥|Rpr>  (25)

It can be shown that!®

F*(p,a) EJO r? exp(—ar) r<;:r1 dr

r-

1 R

=RFT ), r#trexp(—ar)dr+

R"fR r? " lexp(—ar)dr

, 1
=exp (—aR) [—————ag -i-Pni_:l}l{)n;-l .

(aR)! | palp—n—1)!
1=t+n+1—l_!_+R ab~n
pampc (26)
= 1!
According to Egs. (3) and (26),
in Egs. (24) and (25) may be expressed as

k—1—~1 k!-1'—1

<Ru|R®|Rpp>=ApApr >__ K::U} By

t=0

the integrals

!
Bi¥ exp(—2QR) X [(ﬁmq

= (2QR)? , (p—1)! 7 (2QR)?
A g T & g oen
F—1-1 k'=1'—1

<Ry|R¥|Rpy>=AuApr 3__ g] Byt-

t=0

Bkl[l‘l €exp ( - ZQR) X [(%27—‘;%)5_“;{5 M

> (2QR)?, R*(p—5)! %% (2QR)¢

I=Tg ot &g J @
where p=t+¢'+I+0'+2, and By' and Byt
The positive and the

are alternating series.
negative terms of the series are calculated
separately in order to minimize the loss of signi-
ficant figures.

From the Schrédinger equation of Egs. (9)
and (16), one can immediately write down

<o HV+AV| T >=E|¥ > (29)
or
<AV >=(E,—E) < T > (30)

Thus one has

B g0 B AVIT>
which is the Integral Hellmann-Feynman

Theorem®. Eq.(31) does hold even with

approximations &; and & only if they are
made of a common basis set?.
From Eq. (21)

4= (E9—E\°) — (E/%—E\") (32)
According to Egs. (18) and (31)

y =<$1‘y [AV|Te> _ <% |4V | T %>
< | Ty > <t | T2 >
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<3| AV S Pudie>
<l ;lgkfg&k¢9>
<G| VI T 50>
< SR>

=((F191 AVIG19) — (G5 AV $1%5))
+(G91 AV T va9Fect)

— (31 AV] Do)

(33

where vy =p841/811. The first term on the right
of Eq. (33) corresponds to the 10Dg of the
classical crystal field theory. The second term
corresponds to the higher order correction on
10Dq, coming from the mixing of excited con-

figurations.

3. RESULTS AND DISCUSSION

Gomputations are performed on IBM-360, the
electronic digital computer of the Seoul National
University. For the comparison, the empirically
deduced value of 10Dgq of TiFg¢*~, 15,500cm™, 15
is referred. Thus the calculations are performed
for the metal-ligand distance R=3.7, 3.8, 3.9,

and 4.0 atomic units, and for the effective
nuclear charge of the metal ion Q=4.0, 5.7,
5.9, and 6.3. @=4.0 corresponds to the com-
pletely screened nuclear charge by the inner
electrons, and Q=5.9 is calculated from the
Slater rule. The ligand charge Z is varied from
—0.50 to —1.20.

It is noticeable that the higher order effect on
10Dg is remarkable when R=3.8 a. u. and @=
5.9. (see Table 1 and 2) The effect of the higher
order correction is visually presented in Fig. 2.

The contributions of each excited configuration
to the higher order, which are calculated from
Eq. (33), are shown in Table3 and the situa-
tion is more visually shown in Fig. 3. The
equielectron density curve of d,, and dgj in
zz plane (p=0°) are represented in Fig.4 and
Fig. 5, respectively. And when @ is 20° and
45° in zz plane, the probability distributions
along the distance from the metal ion are shown
in Fig. 6 and Fig. 7, respectively. These pro-
bability distribution lines are not normalized.
In Tabled, one finds that the fraction of the

Tablel. 10Dg (cm!) dependence upon the ligand charge Z and the metal charge @ (metal-ligand distance

R=3 8 a. u).
0 Ligand charge (Z)

—-0.50 -~0.72 —0.90 —-1.00 —-1.20

First* 13,100 18, 800 23, 600 26, 200 31, 400

4.0 Higher 300 900 1, 400 1, 900 2,600
Total 13, 400 19, 700 25, 000 28, 100 34, 000

First 4,910 7,070 8, 840 9, 820 11, 800

5.7 Higher —80 —~160 —230 —270 —300
Total 4, 830 6, 910 8,610 9, 550 11, 500

First 4,330 6,230 7,790 8, 650 10, 400

5.9 Highex 1, 370 2, 760 4,210 4, 850 6, 400
Total 5, 700 8, 990 11,900 13, 500 16, 800

First 3, 370 4, 850 6, 070 6, 740 8, 090

6.3 Higher —40 -80 -130 —150 —210
Total 3,330 4,770 5, 940 6, 590 7, 880

*First; 10Dq calculated from the first order approximation, Higher; higher order correction on 10Dg, Total;10Dg

including higher order correction.
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Table2. 10Dgq (cma!) dependence upon the ligand charge Z and the metal-ligand distance R in a.u. (metal

charge @=5.9).

Ligand charge (Z)

R
~0.50 —0.72 —0.90 —1.00 —1.20
First* 4,900 7,060 8, 820 9, 800 11, 800
3.7 Higher ~70 —~140 ~210 —250 —400
Total 4,830 6,920 8,610 9, 550 11, 400
’ First 4,330 6, 230 7,790 8, 650 10, 400
3.8 ! Higher 1,370 2,760 4,210 4,850 6, 400
| Total 5, 700 8,990 11, 900 13, 500 16, 800
First 3,820 5,510 6, 880 7,650 9,180
3.9 Higher —50 ~120 —160 —200 —270
; Total 3,770 5, 390 6, 720 7,450 8,910
4 First 3,380 4,870 6, 090 6,770 8,120
4.0 { Higher —40 —~90 —140 —170 ~230
| Total 3,340 4,780 5,950 6, 600 7,890

*First; 10Dgq calculted from the first order approximation, Higher; higher order correction on 10Dg, Total; 10Dg

including higher order correction.

v eeem g

IODq;8.650 ant

/ 0.209

0.231

i Eg

10Dq=!3,500 e

EE TS W Tom

4.932__’ !

Fig. 2. FEnergy-level diagram showing the higher
order effect on 10Dq. (unit=atomic unit, metal-ligand
distance R=3.8 a.u., metal charge @=5.9, and ligand
charge Z=-—1.00).

radial integrals inside the ligands are dominant,
and the phenomenon coincides with that observed
by Karplus ez .17 It means that the radial

integrals are affected only by the inner functions,

.Eg
L) Xng
Q.4r X X
o
i
5[ e
2
[*
o.2p

e

z
o v—-x—,—;&—.ﬁ‘(—ﬂ—ﬁ!——l—!__)(_x—.g_x__*_q‘__p
4d 54 6d 7d' 84 od (Od 11d' 124 134 5¢' 647 d 8g 9510,

Fig. 3. Contributions of each excited configuration to
the higher order effect (metal-ligand distance R=3.8
a.u., metal charge ©@=5.9, and ligand charge Z=
—1.00).

In Tablel and Table 2, the calculated values
agree, in order of magnitude, with the empiri-
cally deduced value at @=5.9 and R=3.8a.u.
This implies that the point charge model is
fairly realistic at least for this complex. The
calculated values of 10Dg are very sensitive to
Q and Z. The fact implies that 10Dgq itself
sensitively depends on the bond formations

Journal of the Korean Chemical Saciéty
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Takle3. Contributions of each excited configuration to the higher order(metal-ligand distance is 3.8 a.u., metal

charge is 5.9, and ligand charge is —1.0).

29

Ta l E,
el (B # | AV |yut¥ %) ' v ErE G114V [vu By
4d —2.97x10°1 —8.76%x1072 —2.54x107! —6.02x10°2
5d 2.21x1071 —8.82x1072 2.26X% 107} ~9.33x1072
6d -2,00x1073 —8.88x10°6 —7.45%x10™ ~—3.47X1076
7d 8.04x1072 —3.38%x1072 7.95x1072 —3.34Xx1072
&d ~1.75%10°2 —2.75%x10°3 —1.73x1072 —2.54X1073
9d ~2.47%10°2 —1.02x107? ~2.70% 102 ~1.00x10"2
10d ~-1.23%1072 —3.42x1073 —1.21x102 —3.36x1073
11d 7.05x1073 —1.97x1073 6.93%x1073 ~1.93x1073
12d —5.97x1073 —2.65X10°3 —5.68%x1073 —2.60%1673
13d 8.58x10™4 ~1.56Xx10 8.42x10™* —1.53%107¢
5g 1.47x10°2 —3.15X 1074 —2.65%1072 ~1.13x1073
6g 1.89x 1073 —8.11x107 —2.35X10° —2.02X1074
g 1.24x10°4 1.09%1077 —5.62%X107* 9. 84%1077
8g 2.29X1075 4.24%10710 —1.17x1074 4.33%x1079
%¢ ~1.43x10°6 —3.26x10710 2.97X1075 ~1.36x10°8
‘ 10g 3.75X1078 —2.65X1078 —6.16x1075 ~8.75X10°8
11g 1.95%X10°5 —1.25%10"8 —3.19%x10°% —4.08x10°8
12g ~7.74%x10-6 —3.90%x107? 1.91x1073 —1.93x1078
13g 3.36%x107¢ —1.72%x107° —5.70x107¢ —5.39X107°
*un'® =8P/ b, o =Fu/fu .
unoerturbead ]\
]
3 A unperturbed |
——~-— perturbed

Z in au

Z in au.

N

o

~

. 2
X in a.u

Fig. 4. Equielectron density curve of d,, in zz plane
{¢p=0) (metal-ligand distance R=3.8a.u., metal
charge @=5.9, and ligand charge Z=—1.00).

Fig. 5. Equielectron density curve of d..,. in zz
plane(p=0) (metal-ligand distance R=3.8 a.u., metal
charge @=5.9, and ligand charge Z= —1.00).
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\/————unpet‘?urbed dxz

\ [——perrurbed dyz
// \ -‘\

1% unperturbed dy2.y2
pertutbed dyz2_y2

Probability

Q.01

. 2
Distance in a.u.

Fig. 6. Electron density distribution along the line
A in Fig. 4 and Fig. 5 (=0, 0=20°).

00et
unperfurbed dyz
Q.04+ and dy2-y2
>
= verturbed dy-
2 ) ’,.-\t/—;;erfumed dx2-y2
5 A
£ | 4 N
ok -
o.c2 ,/-:\,\ _“/,j/
N 7
;/1
. n
7
7
g %
0 i 5 3

Distance in c.u.
Fig. 7. Electron density distribution along the line B
in Fig. 4 and Fig. 5 (¢=0, 6=45°)

between the metal ion and ligands, and on
the interaction between the inner electrons and
the valence electrons of the metal ion. The
higher order effect is about one half of the first
order effect in 10Dq. Thus, the higher order
correction is essential in the calculation of 10Dgq
from first principles. The parameter 10Dgq, of
which the classical expression is given by

10Dg =<9 AV|*9>—<$,/%| AV | p,?2>
(34)

may be replaced by the empirical value. How-
ever, in the theoretical calculations, even if the

Table 4. Fractions of the radial integrations inside the
ligands (metal-ligand distance R=3.8 a.u., and metal
charge @=5.9).

n | (Ru2lR°°| (Rp2| R | Rua|R°° | (Ro|R*
| Ru2> | Ruz> | Rut? [Rus)

3 1. 000 1. 000

4 1. 000 1. 000

5 1. 000 1. 000 1. 000 1. 000

6 1. 000 1. 000 1. 000 1. 000

7 1. 000 1. 000 1. 000 1. 000

8 1. 000 0.998 1. 000 0.999

9 0.998 0. 989 0.999 0.99
10 0. 989 0.951 0.994 0.971
11 0.949 0.841 0. 968 0. 892
12 0. 854 0.629 0. 890 0.712
13 0.738 0. 385 0.767 0. 455

precise form of the crystal field potential is
given, the first order approximation may not
agree with the empirically deduced values. In
fact, according to the analysis of the [NiFg]¢~
calculation by Sugano and Shulman, where a
relatively explicit potential is employed, even
the sign of the first order disagrees with the
empirical 10Dg value.!®

From Table 3, one finds that the effects of g-
functions are negligible(no angular distortion),
and each excited configuration contributes nearly
equally, in E; and T, states, to the higher
order correction. The phenomenon of the equal
radial distortion is also seen in Fig. 4 through
Fig. 7. It means that there exists the sole radial
integral which can be parameterized. Thus,
10Dgq should be recognized as a unique parameter
at least in the present model. 8

4. CONCLUSIONS

From the observations obtained from the pre-
sent work, one may conclude that, in the 10Dq,
the higher order effect is as important as the
first order. The simple point charge model is
fairly realistic for the description of the crystal
field potential of TiFg~ ion.

Journal of the Korean Chemical Society



AR =g & 10Dgel A9 A7 A& F3 31

Since the introduction of the excited con-
figuration mixing does not alter the angular
dependence of the zero order functions, and
causes the equal radial distortion to the E; and
T,, states, the 10Dq so obtained still remains
as a unique parameter.

Thus, only if the model potential is refined,
one may calculate the 10Dg from first prin-
ciples, within the framework of the crystal
field theory, by introducing the extensive confi-

guration.
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