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ABSTRACT. Linear response theory is proposed to be applied for theoretical description of
the phenomena in mechanical spectroscopy of solid high polymers below glass transition temperatures.
The energy dissipation by sample is given in terms of certain time correlation functions. It is shown
that the result leads to the result by Kirkwood on the energy loss and relaxation of cross-linked
polymers, if the Liouville operator is replaced by the diffusion equation operator of Kirkwood. An
approximation method of calculating the correlation functions is considered in order to show a way
to calculate relaxation times. Using the approximation method, we consider a double-well potential
model model for energy relaxation, in order to see a connection between the present theory and a
model theory used in mechanical energy relaxation phenomena of solid polymers containing pendant

cyclohexyl groups at low temperature.
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1. INTRODUCTION

Mechanical energy relaxation phenomena in
solid high polymers below glass transition
temperatures have been experimentally investi-
gated by various experimental techniques ™3
The experimental data obtained, however, have
not been subjected to extensive theoretical
investigations, although there are a couple of
typical systems studied in a model theory.
Notably, an example is the model which regards
the energy dissipation as achieved by a passage
of particles (groups or molecules) over the
potential barrier between two potential wells,
which was the principal model used by Heij-
boer®. Such theory is hardly general. Therefore
it seems desirable to have a general theory of
mechanical energy relaxation phenomena in
solid polymer systems at low temperature that
does not necessarily have to be confined to a
particular model for the description of molecular
processes involved.

In mechanical relaxation experiments solid
samples of polymer are subjected to strain or
stress and subsequently the response of the
system is recorded. Since the samples are vis-
coelastic, when they are subjected to oscillatory
perturbation (strain or stress), there is usually
a phase lag in the response as well as a de-
crease in the amplitude of oscillation. Since the
two observables are intimately related to the
energy relaxation phenomena of the system, a
study of such phenomena could lead to rich
information on the structure and its relationship

to the mechanical properties of solid polymers.

Since the oscillatory perturbations used in
experiments are in general small in magnitude
compared with, say, the internal energy of the

system of interest, linear response theory*™®
appears well suited for the nonequilibrium sta-
tistical mechanical description of mechanical

energy relaxations. In this article we propose to
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use linear response theory for mechanical energy
relaxation phenomena and show certain time
correlation functions necessary for calculaticn of
experimental observables. We also discuss the
connection of the present approach to octher
existing theories. More specifically, we shall
discuss the relationship between the present
approach and the theory” of Kirkwood on me-
chanical energy loss in cross-linked polymers,
which appears to be the first nonequilibrium
statistical mechanical theory for such pherome-
na. We also consider the double-well potential
model for mechanical energy relaxation pheno-
mena as an example of another comparison.
Suppose that time-dependent stress <!(z) is
Then strain G(¢) is

generated by the system as a response. In the

applied on the sample,

linear regime we have the following relation-
ship! between them:

G(t):f:dc AlD)S(t—1), (1-1)

where A(z) is the modulus. The Fourier—
Laplace transform of A(zr) is defined by
A= dr A, (i-2)
which is a complex function of w. If the stress
is oscillatory in time with frequency o, i e.,

@) =y exp(iwt), (1-3)

then the energy dissipation (E} per unit volume
of the sample may be shown! to be equal to

(By=F0d" @) 17, (1-4)
where

A7 (@) =ImA (w). (1-5)

The A" (w), which is often called relaxation

modulus, can be measured in terms of the phase

lag 6(w) defined by

tan 6(w) =A" (w) /A’ (w), (1-6)

where
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A’ (0) =Rel (v) (1-7

In the subsequent sections we will be concerned
with a molecular theory to calculate A"’ (w) and
A’ (®) in terms of molecular interactions and

other pertinent molecular parameters.

2. LINEAR RESPONSE THEORY AND
MECHANICAL ENERGY RELAXATION

In order to apply linear response theory to
the situation in hand, it is necessary to consider
first the Hamitonian. The Hamiltonian &%, for
the system at equilibrium may be written as

follows:

ggIJ:T(Ph "',PN)+V0(qls "% (IN)7 (2—1)

where T and V, are the kinetic and potential
energy, respectively. This Hamiltonian is time-
independent. When time-dependent external
force is applied on the system, the energy of
the system is no longer conserved and the
Hamiltonian becomes time—dependent. In the

present case we may write as

‘%:%O—F(qh "‘,QN) Cs(t) (2—2)

H:zre the stress may be also a function of
space coordinates, but we will assume that it is
difficult to
that the

a function of time only (It is not
remove this assumption). This means
stress is uniformly constant over the sample.
Thus S(¢) is assumed to have the form as given
by (1-3) with <%y as a constant. F(gy, ***, qn) is
a ce-tain function of coordinates characteristic
of the system of interest. This function is often
not known, but it is sufficient for our purpose
Later, we shall

F (see Sec.

here to assume that it exists.
discuss a couple of examples for
3).

Then, according to the fluctua tion—dissipation
theorem® %8 the ensrgy dissipation (E) may

bz given as

(E>= ;J—h tanh (%ﬁhw)
GO, FOIDDIE, @8

where

F(t) =exp(Gh %t H,) F (@) exp(—ih 4 H;),

(2-4)
(PO, FOI=[_dtenT,
{0 lFOOF@+F@F0)}, (2-5)
and
po=exp(—pHo) /Ty exp(—pH,)  (2-6)

the canonical ensemble density matrix. Here we
have used the quantum mechanical formalism.
We thus see that the energy dissipation is di-
rectly related to the Fourier transform of the

time correlation function of F(qy, =, qn),
CO=(FFOFO+FOFO)]

=(3F(O), F®)ID, @)

where (- means the equilibrium ensemble
average.
with the

menological equation for (E), (1-4), we obtain

By comparing (2-3) pheno-

the molecular expression for fl”(w);

A () =1 tanh(%ﬁﬁw\)é(a}), (2-8)

where
Clay=[_ e, 2-9)

Eq. (2-8) is the desired formula that

serve as the starting equation for the theory of

can

mechanical energy relaxation phenomena. Since
in experiments the frequency dependence of (E)
in essence is measured at various temperature,
Eq. (2-8), when calculated as a function of o,
would supply the energy absorption profile. In
this sense the situation with the mechanical

energy relaxation phenomena is quite parallel
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to the conventional electromagnetic spectroscopy
and by calculating (2-8) and (2-3), we are in
effect calculating the line shapes in mechanical
spectroscopy. We believe that this analogy
would be useful in developing further the present
theory, as it would enable us to benefit in such
effort from the fairly well developed theories
of line shape in the electromagnetic spectro-
scopy.

If we ignore non-commutativity of the oper-
ators F(0) and F(¢), C(¢) may be written as

C@)=<FOF@>.

Furthermore, the frequency usually is so small
that the condition

(2-10)

haw /T (2-11)
is satisfied in general. If we use (2-10) and
(2-11) in (2-8), we then obtain

217 __ W A

A (m)—————sz Clw)

W _
= (FOF O (212)

We will be concerned with this form of A"’ (w)
in the following discussions. Given a specific
form for F{g), one can in principle calculate
the time correlation function. However, such
calculation is not practicable without approxima-
tions due to the difficulty associated with the
many-body nature of the problem. Approximate
calculations of C{(¢) will be more fully dealt
with in future communications.

In the next section we shall consider a con-
nection of the present theory with the theory” of
Kirkwood in a related subject, since it would
reveal the general nature of linear response
theory as applied to the mechanical energy
relaxation phenomena and also would render a
further support for the present approach to the

phenomena.
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3. A CONNECTION WITH KIRKWOOD’S
THEORY

In 1946 Kirkwood” proposed a theory on
mechanical energy relaxation of cross-linked
polymers, based on a Brownian motion model,
which appears to be the first nonequilibrium
statistical mechanical theory for the phenomena.
Nevertheless, it seems that the theory has not
been pursued further except by Bueche’® who
considered a similar idea in a somewhat differ-
rent formalism in the subsequent years.

Kirkwocd proposed to use a diffusion equation
for the distribution function in his theory and
proceeded to solve the equation in a perturbation
theory. He expanded the distribution function
in a series of the applied stress <} and obtained
the first order correction to the equilibrium
distribution function, since the process linear in
<y was of interest. With the distribution func-
tion thus %btained, he calculated A(w) (in our
notation). Here we would like to see how (2-
12), for example, is related to his result. This
should not be regarded as an idle exercise,
because it would show the unifying feature of
(2-12) as well as a way to calculate C(¢) with
a model theory like Kirkwood’s.

In order to facilitate this discussion, we

observe that (2-4) may be written in the
following form:
F)=exp(iLt) F(g) -

where the Liouville operator L is defined by

LF: h—l[geo, F]:h"l(gfoF—Fgf()). (3_2}

We also note that in the classical mechanical
formalism it is only necessary to replace L with
the corresponding classical Liouville operator

L@ defined by

N 0K, 0 oF 0
L(c):___ 0 = — 7 0
11=21L 9p; O dg;  0p; J
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(3-2

Kubo!® showed that it is possible to replace
the Liouville equation with a corresponding
stochastic Liouville equation for the description
of the evolution of the system. This means that
we may replace the Liouville operator L in (3-
1) with the operator corresponding to the dif-
fusion equation used by Kirkwood. For this we
assume that it is permissible to replace L with
L@ i e, the classical description is acceptible.

Kirkwood assumed that the chain segments go
through rotary diffusion in the space of angles
gi, i=1,...,N,defined by the adjacent planes
containing two sets of adjacent chain segments.
This assumtion can be stated mathematically
in a diffusion equation for the distribution
function in the g—space.

Then in this g-space the time correlation
function C(¢#) may be written in the form,

CO) =[dar+dax F(g, -+ an)®
[F (qu M) QN) pO], (3_3)

where the diffusion operator is defined by

Do=p-D-W+dr Vo/kT]
=y D-Wd—¢rinp] (3-4)
The gradient operator {7 is defined in the

g-space of N dimension. Here p, is now defined
by

QPO: Of (3—5)

that is, the equilibrium ensemble distribution
function. It is important to note that the po-
tential function appearing in (3-4) is Vi, not
Vo+ &, (¢). This can be understood if we recall
that we are considering the response of the sys-
tem to the perturbation Z;(f) to a linear ap-
proximation in linear response theory.

It is convenient to define a Hermitean operator
£ by the relation!!,

D (¢po) = — po L (3-6)

ie.,

Lp=—(7 -D-F+Vinpy-D-y¢l  (3-7)
It is interesting to note that this £ is precisely
the negative of L defined by Kirkwood (see
Eq. (13) of Ref. 7). Then C(#) can be written

in the form,

C(t)=dgr---dgnpo Flqy, -+, qn)e™
Flgy, -, qn)=(Fle"**|F>  (3-8)

Now we define an eigenvalue problem for .2;
Lo3= 2y (3-9)

where ¢; is the eigenfunction of £ with the
eigenvalue 4. With normalized eigenfunctions
{p;}, which are also orthogonal to each other

Fu=<orlov

:fJQI"'JQNPu¢1'*¢1’ (3-10)

we obtain the correlation function in the form,

C@® =};Ie“‘ {FlooLp F>, (3-11)

and by taking the Fourier transform, we obtain
C(w) in the form,

é(w):z 20 l{F o |?

7 1+ (rw)? (3-12)

where
Ti— 1/1 (3—13)

Now in order to show the equivalence of (3-
12) to the Kirkwood formula, we first consider
{Flewp. It is given in the form,

{Flop :qur"dquoF (g1, gn) 0
(3-14)

where we now must take for the space-

dependent part of the perturbation”
N

F:R‘elzlgl r;-€, (3—15)

r; being the bond vector of the Ilth chain
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segment and e; the unit vector along the direc-
tion of stress applied. It is to be noted that in
Kirkwood’s theory r; are functions of angles g;
between two planes containing two sets of sectors
(rs, rizy) and (r;, r;41), respectively. By taking

the linear transformation

Pa=p0 % ¢y (3-16)
and

Ly=0012Lpy"172,

one can show that

Ly=7-D-F+ulq) (3-17)
u(g) ITifV'D'VVo
_—(fj}T*)TVVO'D‘VVO {(3-18)

That is, ¢; are the eigenfunctions of the ei-

genvalue problem considered by Kirkwood,

Lon=2¢n,
‘This is Eq. (14) of Ref. 7. Therefore we may

now write

(Flps) = [dgyday(R-e) $r00?
=Ag?) dgi-+-dgn (R-e1) eV o 2T,
(3-19)

where

Agi=[dgydqy eVoiT (3-20)
Since ¢; are exactly the same eigenfunctions as
defined by Kirkwood, we have now shown that
{Flpp is exactly the same as Z; defined by
Kirkwood (Eq. (15) of Ref.7). Therefore, we
now see that Kirkwood’s theory results from
the linear response theory result, e.g., (2-10),
if the Liouville operator is replaced by the
corresponding diffusion operator., A moment of
reflection would reveal that this should not be

surprising because both linear response theory

Vol. 20, No 5, 1976

and Kirkwocd’s theory are exploring the linear
regime of energy relaxation phenomena and
thus rely on a first order perturbation theory
for the distribution function. This comparison
also renders a support to our linear response
theory approach to mechanical energy relaxation
phenomena. Since the diffusion operator used
here is only a mcdel for the Liouville operator,
the above comparison also implies that the linear
response theory is inclusive of Kirkwood’s theory

and therefore may te regarded as more general.

4. APPROXIMATE CALCULATION OF
THE CORRELATION FUNCTION

If it is allowed to replace the Liouville oper-
ator with the corresponding diffusion operator,
then (3-12) is exact with the exact eigenfunc-
tions within the wvalidity of linear response
theory. However, it requires the eigenfunctions
and the eigenspectrum, which are not necessa-
rily simple to obtain except for some special
cases. Therefore it is common to resort to
suitable approximation metheds to calculate
C(w).

There are varicus techniques developed for
it 18

calculating correlation functions. Since

not our aim here to either develop another
method or review all of them available, we shall
simply indicate how far we can go with a
known method, since such an effort would again
indicate that mechanical spectroscopy could
benefit much by making contacts with various
theories in other disciplines of spectroscopy.
Besides, the present section will serve as a
preparation for the calculation made for a
double-well potential model in the next section.

Here we shall use the well known projection
operator technique!®12,

In order to use the projection operator form-
alism for (3-7) with F defined by (3-15), we

introduce a set of dynamical variables {4;; i=



346 ® & B

1, -+, N} such that
Ai=ri-e1—(ri-ep. (4-1)
Then obviously
{4p=0.
With thus defined A; it is now possible to show

c® =LZ.: <A1(0) Ax(6)> (4-2)

since

CF0)>=<F(®)>=0.

If (4-3) is not fulfilled, it is only necessary to
add <(F(Q)Y{F(t)> to the rhs of (4-2). Then

the matrix of correlation functions Ay, which

(4-3)

are defined by

Ap@) =<4 (0)A:(£)>
=CA(0)e 4 A (0)),

where £ is defined by (3-6),

Markoffian evolution equation. This evolution

(4-4)

satisfies a non-

is in the form'% 12,

L AW =-2A0+[ dK—9-A),

(4-5)

where
an: Z <Aj—QAm>[1mn ’ (4"6)
('Y =<4;4Ap, 47

and with the projection operator P defined by

Prp= Z}EA A 5CABY, (4-8)
¥
Kjn@ = 31(AL(1—D)ed -9

The second term in (4-5) is the memory
term. If the memory term can be neglected,

the equation then takes the approximate form,

O 4(t)=—0-4.

ot ~

(4-10)

The solution of (4-10) requires the solution
of an N-dimensional eigenvalue problem: Let A
be a diagonal matrix such that

UQu=4 (4-11)
and

A®)y=Ua(®) 4-12)

Then the solution a(¢) is easily obtained from

(4-10) and we have for the correlation function

Ay
Ap() = ,Z Unexp(—A;0) A;(0), (4-13)

Finally, the relaxation modulus to this ap-

proximation is given in the form,

;1//(0)) — w E Ulj TjAjk(O)

FT ;30 1+ (fjw)? (4-14)

where
5=1/4. (4-15)
An explicit calculation of (4-14) requires

knowledge of @, which is rather complicated,
for example, in Kirkwood’s model. Since the
formalism presented is suffiently flexible as to
be adopted to other suitable models, we shall
introduce a further simplification for calculation
of (4-14) in order to see if we can recover
some known results.

We assume instead of (3-14) for F the fol-

lowing form resembling the Hookean model, ?

F:/‘; algi—q"), (4-16)

where « is a constant and g; this time denote
the particle (bead) coordinates of polymer chain
and ¢ their equilibrium values. Then in this
g-space we can still assume the diffusion equat-
ion (3-4).
The dynamical variables A; now can be
identified with
Ai=algi—q, etc 4-17)
We further assume that the equilibrium cor-

Journal of the Korean Chemical Society
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relation of A; are diagonal:

A (0) =<4 (4-18)
This means that
(I jp={A;50 ;. (4-19)
Then we obtain from (4-6)
Qjn=CA;LAN<AD). (4-20)
Since we have
(AjLAY=FA; D7 Ay
= ;l FrA;Dul 1A (4-21)
and furthermore
Vil j=ali(g;—q%)
=ad;, (4-22)
the matrix elements Q;, takes the form
Q=DA% (4-23)

Here the diffusion tensor represents interaction
between particles. If we assume that the diffu-
sion tensor is diagonal we obtain

Q;n=aDj {A8;:=a’D;*CA}*>6n,
(4-24)

and then the relaxation time simply becomes

r,-‘lzaL’DjO(Aﬂ) (4-25)

If the particles are subjected to harmonic oscil-
lation around the equilibrium positions, then we

have

kT

m;jwj

A j2> =

2 (4-26)

where m; and w; are respectively the mass and
the frequency of the oscillation, and the relax-

ation time now takes the form,

4-27)

~l_ 2.0 2
;7 =a?D kT [mjw;

This result for the relaxation time is quite
reminiscent of the result by Bueche®.

In this case the relaxation modulus A’ (@)

Vol. 20, No. 5, 1976

becomes

zi{AD

A __w
A @) =7 ; 1+ (wr)?’

(4-28)

where (A% and 7; are respectively given by
(4-26) and (4-27).

Calculation of the correlation function C(¢)
are in progress with another approximation

method and will be reported elsewhere. 13
5. A DOUBLE-WELL POTENTIAL MODEL

The mechanical energy relaxation of pendant—
cyclohexyl-group—containing polymers has been
attributed® to tunelling through and passing over
a potential barrier by the pendant cyclohexyl
group. In this model the relaxation is achieved
essentially by one-dimensional motion along the
“reaction coordinate” corresponding to the boat—
boat conformational transition through and over
a potential barrier. In order to accommodate this
medel in the present formalism, let us now con-
fine the discussion to a one-dimensional version-
In this model the

“reaction mode” moves in the field of a one-

of the results in Sec. 4.

dimensional effective potnetial which arises due
to the interaction of the mode with the sur-

rounding medium. Therefore, we have only

one dynamical wvariable A; which can be
chosen as
A'=F(@, G-

where ¢ is the reaction coordinate. Since we can
use the formalism presented in Sec. 4 for this
study, we only give the result. The relaxation

time may be calculated from (4-15). It is given by

7 1=D¢ (5-2)

oF
g

OF g2
25 e,
where F(g) is a function of ¢ and D a diffusion

constant instead of a tensor. In order to keep
in line with Heijboer’s model3, we shall assume
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that the polential V; is made of two potential
wells separated by a potential barrier(see Fig.
1).

The cyclohexyl group (mode) moves in the
one-dimensional potential well and has a proba-
bility to tunnel through the barrier to the other
potential well which corresponds to the other
conformation. Therefore the tunnelling and
passage over the barrier are equivalent to a
conformational flipping of the cvclohexyl group,
The interaction of the cyclohexyl group with
the surrounding is achieved in two ways: One
Vo and the
other through the dissipation of energy which

is through the effective potential

is accomplished phenomenologically through the
frictional motion (The frictional motion is im-
plied by the presence of the diffusion constant
D in the formula).

In order to carry out the calculation of the
relaxtion time as a function of temperature, we

expand V; around g4 and gz as follows:

Vo= Va+Falg—ga)?, —o0<g<lqc
Vo=Vg+Fplg—gn? qclgloo, (5-3)

We wish to remark here that the calculations
performed below are approximate and mathe-
matical rigor is sacrificed for the sake of the

Fig.1. A double well potential.

]
G G G q

intuitive picture we wish to gain. The same
attitude applies to (5-3).above. More rigorous
calculations can be done, however, which would
not give simple analytic forms for the results.
We may write the correlation functions in the

forms,

<< gf >)2>:.4,,J1dq e-p’vn(;gg,)z, (5-4)

and

(F=Aof dge#oF2 (). (5-5)
Here we assume that F(g) is a linear function
of g, ie.,

F(q):{FA(q—qA), 9=qc

Fgplg—qp), 9=4qc. (5-6)

If the range of the integrals (5-4) and (5-3) is
divided into two regions, [—<e, ¢c] and [qc,
oo], and if the approximate forms of the psten-
tial are used in each interval as given in (5-3),
then we can evaluate the integrals analy-
tically. Without going into the details of
calculation, we give the results as follows:

AR \2
<< gg ) Sa~ (nhT)1/2F 432
(e — 1 (Fa/zkT) V2
(gc—gqa)le Ve tee]
+ (TEkT) 1/2F83/2[e—ﬁVB

—% (Fp/nkT)'*(gp—qc) "
et e] -7

and

(PO~ LUTFACHT [P o7
—(gc—qa) e FVet-e-]
+ LETFp( (kT [F)V /% ¥
—{(gz—qcle W c+---], (5-8)
where V¢ is the potential energy at ¢g=gc, the
barrier maximum. In the case of the cyclohexyl

group it is reasonable to assume that Fa=~Fp.

Then we obtain an approximate relaxation time

Journal of the Korean Chemical Society
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in the form,

T..1§T+o.e—o/kT (5“9)
where

QR=Ve— Va4,

the potential barrier height referred to the well
depth at 4, and

7’=mef2/kT, wr= (ZFA/m) 1/2, (5—10)
o=2nD(mag?/2zkT)3* 4g; Aq=qp—qa.
(5-11)

Therefore as either @Q—cc or T—0, the relax-

ation time tends to the value 771,
T-l — Tm—l =7. (5—12)

This means that even if the potential barrier is
so high that there is little probability of passing
over the barrier, the relaxation of mechanical
energy is still possible due to the fact that the
oscillator in the well V4 suffers a damping in
motion due to its motion in the viscous medium

with the diffusion constant D. The ratio o/7 is

kT 1/2
olr= (Z/x)wqu/( SEm )

= 2/mwrl v/ 4dg)

=(2/x) wf/wshuttlea

where @gute 15 the frequency of the particle
(group) shuttling between two points A and B

with an average velocity
(vy= (8kT [mm)'/?,

Since @y is much larger than wgyue the re-
laxation will be controlled by the second term
and we may neglect the first term in such
case. Then the relaxation time is of an expo-
nential form. If the shuttling frequency is faster
than the vibrational frequency, the energy
dissipation is not achieved by the conformational
flipping, but is determined mainly by the rel-
axation of the vibraticnal motion in a well.

This conclusion seems intuitively reasonable.

Vol. 20, No. 5, 1976

This aspect of the competition between two
different modes of energy dissipation was not
considered and is not apparent in the analysis
of Heijboer?, for instance.

We have not shown the formulas fos A’ (w)
and A’(w) since it is casy to obtain them. In
particular, A’(w) can be obtained from A (o),

if the Kramers—Kronig relation®!® is made use

of.

6. CONCLUDING REMARKS

In this article we have proposed to use linear
response theory for studying theoretically me-
chanical energy relaxation phenomena of solid
polymer systems at low temperature. We have
shown the connection between the linear response
theory results and those by Kirkwood who used
a different theory. The comparison shows that
the present linear response theory can be re-
garded as being inclusive of Kirkwood’s theory.
In view of the present lack of adequate general
theory, we believe that the present linear
response theory approach would be useful for
analysis of experimental data in mechanical
spectroscopy. The study made here shows that
there is a possibility of putting the theory of
mechanical spectroscopy perhaps almost on the
same level as that of the conventional electro-
magnetic spectroscopy. This is one of the points
the present paper has aimed to make. Due to
the inherent complication of polymer systems,
interaction between theory and experiment is
essential for proper understanding of the phy-
sical and mechanical properties of polymers. We
hope that we have shown there is a basis for

such interaction to begin.
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