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ABSTRACT. The integral Hellmann-Feynman Theorem of Parr is generalized to give a full
significance to the off-diagonal form, and certain aspects of it are discussed. By use of the genera-
lized form of the theorem, effects of configuration interaction to the crystal field theory are exami-
ned, taking perturbation energies of all order collectively into account. Thus, it is shown that there
do not exist, especially when the field is strong, the radial integral which is common to all states
characterized by 7, S and m, and could be parametrized. If, however, one restricts the perturbing
excited states only to those angularly undistorted and radially equally distorted, there results simple
scaling of the crystal field parameter 10 Dg and Condon-Slater parameter F* defined within the
framework of the classical crystal field theory.

transition metals and rare earths. The theory®>
L INTRODUCTION ‘ ey
based on the assumption that the substituted ion

The crystal field theory of Bethe! and Van feels a purely electrostatic field with point
Vleck? has played the pioneering role in expla- group symmetry of the lattice site it occupies.

ining the energy states of complexes of the In practice, the theory employes semiempirical
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method in which certain integrals are paramet-
rized and determined by fitting the observed
transitions®~10,

Attempts to calculate the magnitude of the
crystal field parameters within the actual frame-
work, which is essentially based on the first
order perturbation theory from the degenerate
zero order configuration, have led to the results
that disagree considerbly with the empirically
deduced values™. Naturally and quite logically,
the extensions of the theoretical framework to
the second order have been tried with configu-
ration interaction of excited states being taken
into account. Perhaps, the work of Rajnak and
Wybourne!?13 is the most typical one this line.
They have examined the effects of configuration
interaction, by introducing additional -effective
two—and three-body interaction terms to the
Hamiltonian. By use of the second order pertu-
rbation scheme, they have concluded that, in
spite of that the traditional theory was develo-
ped without including the possibility of excited
configuration interaction, many of its effects are
autometically absorbed when the radial integrals
appearing in crystal field theory are treated as
parameters to be determined from the experi-

mental data.

Now then, a legitimate next question is what
happens if one includes fully the sum of all
orders of the perturbations in configuration
interaction. In the usual perturbation scheme,
when the perturbed functions are obtained in
the actual framework of the theory, it is har-
dly possible even to express in meaningful form.
Rajnak himself noted “in going to higher orders
of perturbation, do higher order n-body interac-
tions arise” On the other hand, if one tries to
seek the solution via variational scheme, one is
-confronted with other sort of difficulties. That
is, the difference of the expectation values,

which is nothing but the perturbation energy,
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does not depend linearly on the excited configu-
rations which one mixes into the trial functions.
Thus it lets one be unable to visualize the effe-
cts of a specific configuration to the total pertu-
rhation energy. One will be very happy if there
exists such a formula that i) it gives the sum
of the perturbation energies of all orders if one
uses exact perturbed wave functions, and ii) it
conserves same form, as long as one uses pro-
perly optimized initial (unperturbed) and final
(perturbed) wave functions, and equals to the
difference of the expectation values of initial
and final states, and iii) the form of the for-
mula facilitates to visualize the contribution of
each component.

The very formula, having those traits which
one hopes it to have, is the Generalized Integ-
ral Hellmann-Feynman Formula, is going to be
developed in the present paper.

In section II, we develop the formula just
stated and discuss the characteristics of it. In
the section III, we choose the system of (34)2
configuration placed in the field of octahedral
symmetry as model case, and discuss the effects
of the configuration interaction, on the crystal
field parameter and Condon-Slater integrals,
We exclude

the spin dependent interaction since we are not

and on the classical theory itself.

dealing with any real system presently.

II. GENERALIZED INTEGRAL HELLMANN
~-FEYNMAN THEORM

Given the Schrodinger equations
H°gp=E’ ¢y ®
Hf=E«y, H=H°+4H 2

where 4H is a perturbation and ¢;—¢;, E—
E° as AH—0, one can immediately write down

{Gp| H° + 4H |¢pp = E{ds | o> 3
or

$Gel dH| ¢ = (E;—E°) gl > @



200

Thus one has

{pe| dH| P
el

which is the Generalized Integral Hellmann-
Feynman Theorem (GIHF). With %k=/, there

results

E—Ey= with {@elgp >0 (5)

(| 4H|dp
{oildw
which is the ordinary Integral Hellmann-Feyn-
man Theorem (IHF)#6 and has been known

for some times.
Especially, if the zero order level has a de-
generacy, GIHF takes a peculiar form:

Sl dH|d)
el

with <¢k|¢l>#0, Eko'—‘—‘Ezo

AE=(E,—E")= 6)

AE[Z
)

In other word, one can take an arbitrary zero
order function ¢ as long as E°=E;°, to
obtain the sum of the perturbation energies of
all order, 4E,=E;—E;°.

Since the derivation of Eq. (5) is based on
the Schrodinger equations (1) and (2), with
arbitrary approximation f; (for ¢;) and g; (for

¢y), it does not follow that

AB= {gi|Hlgp _ {HlHCfp

{gilgr filfw
=SB i (rilgpr0 @

However, it has been shown that Eq. (6) does
hold indeed when both f; (for ¢;) and g; (for
<) are composed of a common basis set (com-
plete or limited)'®, and the expectation values
of the respective Hamiltonian are fully minimi-
zed by solving the secular equations. It will be
shown below that the same is true for the ge-
neralized form. Suppose that one expand f=
(f1, fa ) and g=(g1, g2, ) with a common
basis set £=(&;, £,,-++) such that

f=ta, ata=1

9

"
g=4£p, fp=1 (10)
where @ and 5 are chosen to satisfy
atH a=HC/= {§;;H;°f} an
BH f=Ho= {9;;Hs;;} (12).

H*={&IH |&p}, HY={(fi|H°| £}

H={&|H|&p}, H={{g;|H|g;} 13y
Then immediately it follows that

atHf=atSHY (14)

atH*f=H/a* 8 15)

Subtracting Eq. (15) from Eq. (14), one obtains:

at AHEf=a* HI— HOf B 16y
where
AH*={{&;| 4H|Ep) = HE — H¢ an
The i element of Eq. (16) is
{fildH|gp={ g Hlgpy —{Fe| H° | f}
{flgw (18)

which is equivalent to Eq. (14). Thus with
AE=E,—EP, E'={g/|H|gp,

Eo=( )L HO | (19)
One has
E,—Ef=<—f;}f—@;"—'>— with <filgd %0 (20)
«_ {fildH|gd
L P

with {filg>x0, EL=E] )]

Since one is going to use very this form of
GIHF in the following section,
wosthwhile to give a few comments on Eq.
(21). Suppose, f is ¢ itself, which is the exact
solution of the Schrédinger equation (1). That

it may be

is, @ is the unit matrix. Then, taking
f=¢, g=¢8
it follows from Eq. (21) that
AE;={¢;| 4H]| LidiBub w =L@l AH| iy
with =0 E)°=E/° (23)

(22)
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with
7" =Bubut (24)

According to Eq. (23),
energy 4E; is linear with respect to each com-

the total perturbation

ponent ¢;. The ordinary variational treatment,
where 4E; is computed in terms of the differe-
nce of the two expectation values, never shows
such a linear dependence.

Furthermore, if one combines Eq. (16) with
Eq. (22), there results

AH?*S=SHs— H°¢8 (25)
where

AH={{$;| 4H| ¢} (26)

HY%={{¢;|H®|¢;>} = {6,;E;"} (27)

Then if % belongs to the degenerate space (1<
E<gs, E°=Eg,°), then one obtains the secular

equation

D {4dH#—65:(4E)} =0 1<k<g, (28)

of which eigenvalues are 4E;=E;—E;;°. When
A4H? is a factored block form due to symmetry
consideration, so is the matrix 8. It means that
which have
4H,#, participates in g; via Eq. (22), as well as
in AE;

only those ¢)’s, nonvanishing

III. EFFECTS of CONFIGURATION INTEG-
RATION on CRYSTAL FIELD THEORY

Presently, our system of interest* is an atom,
of which valence shell configuration is (3d)2,
with the effective nuclear charge Z acting on
the two electrons, and is placed in the field of
octahedral symmetry, V°.

Ve=v"(1)+2°(2) (29)

‘[)OE‘DOO +v°4 (30)**
1*°=R°(r)e°° (6,9), 0°° (6,0) = Yo° (0.9) (31)
PE=ROM6H0, 0), 040, p)=

LY 0,0+ /2 (000,00 + Y0, 9))
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(32)

The Hamiltonian is, neglecting spin-dependent:
interaction, given by

H=H°+V° +}u (33)

He=k(1)+1°(2) (34)
o Llpa 2

ho= D) 7 - (35>

in atomic unit.
The one electron basis are (symmetry adap-
ted) solutions of the Schrdodinger equatons,

Rou=edu (36>
where 7 and % stand for

izl, 2’ 3, 4, 5) 6; 7, 8) 9’ 10

u @ v v a a b b ¢ ¢

g t2g
E=1, 2, 3, 4, 5,eecreeens
3d 4d5d Sg 6d .........

For example ¢y, 3 is 5d orbital of S-spin with
v-type ¢z symmetry of the octahedral group.

In constructing the two electron basis set, we
take only the one-electron excitation into acco-
unt. One reason for this is that the two elect-
ron excitation costs much higher energy than
the one electron excitation in the hydrogenic:
atom. The two electron primitive functions,
which behave exactly as the zero order functi-~
ons ¢; in the octahedral field are given by

F (8= Ni{ S 19D 631(2) |+

oD o (2|} GC>5) 37)
with
1
—— for &
Ny= 1/12 or k¥1 38)
5 for k=1

*One can extend to (3d)" system without any essen-
tial feature of the formalism.

**Although one may add the terms of Y/”(d, ¢) with
{>4, they are neglected because the addition does.
not affect the reasoning given here at all.
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.S, stands for z-component of the total spin,
-and cp means p-th function of ¢-configuration
(c=1. 2, 3 for e e} £ and #5%). The
choice of the primitive functions as Eq. (37)
facilitates the symmetry adaptation. That is,
the transformation matrix is common to all

values of &:
Q)
C'Y)<Fs S: Sz)c’jlv: EF(Sz>cpk11(P: S7 Sz)cp.cq (39)
I3

where 7, S stand for irreducible representation
and total spin, and (%) means g-th component
of B-th basis vector (excitation to A-th level
from k=1, 34) with c¢-configuration (¢=1, 2,
3 for ¢, ety and £2,%). On the V° poten-

tial, @.Fs are diagonal with respect to cq, but

mix into each other through % On the ——rl—
12
potential, they arz diagonal only with respect
to q.

The completely diagonal bases on the total
Hamiltonian are then constructed by

(r,8.8z

O, 5, 8)m= % &, 5, 5) o

B(p’ S, Sz)cq-mé’ (40)
L5, 8y
T8, 50 n=~ 3 DO S, 5Dl
G(F, S! Sz)cq‘mq (41)

where @(1",S,S.)m, is for without (excited)
and @S, S ) mg 18

for with (excited) configuration interaction. @,

configuration interaction,
(hereafter for brevity, the arguments in the
parenthesis are omitted when there is no possi-
bility of confusion) is the one which is used in
the most naive form of the crystal field theory,
in strong field case. Substituting @, of Eq.
(39) into Egs. (40) and (41), one obtains

(,8.50) (O

(bmq: gj pZFCPIA (Fs S: Sz)cp.mq <42>
.and

IR DY (o)

Youg= ; ; Z.}Fcpkgk([’, S, 8e)ep u (43)

%
where

A<F1 Sa Sz)tP:quA(F, S, Sz)cp:cq
B(Fy S; Sz) cg:mq (4i>

and

Q(P, Sa S:)cp:mquA (]17 S’ S:.:) [:H¢']
G(Fs S; S:) cq'mqk (4'5>

In practice, the A.pme and Oupnet are obtained
by solving the respective secular equations.
According to the statement associated with
Eq. (7), one can select any F,,! provided
that the correponding A,y ., (and hence Ay p .y
and Q4 .mg") does not vanish, to express the
perturbatiOn energies by use of GIHF. That is,

EW a,s, m)E<@mql VO_{___,l_» I¢mq>

T2
= <cpmq ‘ Hl q)mq) - <®mq IHO ]¢7nq>
:<Q>mq|H|q)mq>_<Fc'p’1|Ho IFc’p’1>
. 1 -
= <Fc’p'1| Vc +a]¢mq><Fc’p’l|®mq> t

(46)
Similarly

AE([Vi S7 7”)E<@-mq IHI w’mq) - <®mq 11{0 l¢mq>
- <@‘mq IHI w'mq> - <Fc’p’1 I HO l Fc’p’l>

=B VoA |0 B [T ™!

47

The matrix elements with respect to the F *s
are

<Fc'17'1 I Fcpk> :acc’app'akl (4‘8)

CForp | VO F gt = 8,06 55 N i1 | 2° |8 +
Giwy Tt Ondn+é;/w}  (49)

Fop'lE [Fept> = Nikgn (1) 671(2)

=61 (D) 65121 ;- 160 (D2
+u(1)61(2)> (50)

where one may recollect that i<(j, and d;:0;;
corresponds to 8.8,y because there is one-to-
one correspondence between cp and ij by Eq.
(37). Substituting Eqs. (42) and (43) into Egs.

Journal of the Korean Chemical Society



59| 2] Integral Hellmann-Feynman Theorem 3} 7% 20149 A7 AL &3 203

(46) and (47) respectively, and using the in-
tegrals of Eqs. (48), (49) and (50),
tains, with little manipulation,

one ob-

r,8.82) (C)

T8,
E® (T, 8,m)=CFept| VoI Fep + & 2

(Fopt | |Fcpl> Aep-ma "<¢.1|v |

)(:)

+<¢J’1‘v0l¢1’1>+ Z Z<¢x 1¢J 1—¢J 1¢t ll
1‘—12 |¢i1¢jl>ﬁ@i’ ‘ (51)

and

AEZ‘([',S,m) Z<F r,;llvolF,Pt> ch mql

cp’ 1myq
(I'S S (<) ]_ Q
1 F. .k chQ
+ ~ ,§<Fcp I ‘ cp) Q’p'mql
”‘(95: 1|'U<:=|P )x'1+ Z¢| 'klc'm >+<¢;'1|v |¢1'1

+ §¢j'kﬂ°m‘> ¥ ; ; <¢i’l¢j’l:$ _;"l¢j'l i
1 Ry Ly
1z I ¢|’1¢Jl +2;% (é?;k#cm )

+ (Sutent) B0 M‘ (52)

ﬂlq

where
ﬂt’;nk——'——ﬂ(rs Sa S:) c'm —

N g: ‘e mq
G (53)

k
et =pa(T', 5, 8.) =i 0etmd
cp:mq

&
2%%#_ (54)

— Nch’P':mqk
Q.

1
c’'p:mq

and F,,!

corresponding and A, p.m, do not vanish.

is chosen in such a way that the

The striking resemblance of the two fomulae,
Egs. (51) and (52) is only superficial one,
since f.n* does depend on I', S and m. The
dependence actually prohibits a unique definition
of the crystal field parameter 10 Dg, as earlier
worker noted by different approach'”. For the
which is the (first order)
energy of strong field case in the classical field

comparison of EY,

theory, with 4E, perhaps one had better reg-
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roup the right side of Eq. (52):

AE(T, 8, m) = {{$in | v° 1$s) +<{Bjn |v° 16510}
+ {{@inlv° 1§¢i'huc’m‘> +{julv°]

8.8 ()

‘Z:zdsj’k#&c’nt)} '*(‘ ' ; §:<¢i'l¢j'l_¢j'l¢'i’l |

(I, 5.8z (c)

x |¢.-1¢,~1>-Q-cﬁ«—‘1—+ (2" S6umdin
_¢J’1¢x 1‘
Bernd }—{V(1>}+{V<n>}

o' P mq
+{L(1)} +{LAD} (55)
with obvious definitions for V(I1), V{dD), L
(1) and L{I). What one experimentally ob-
serves is not the 4E itself but the difference of

| E (¢11¢1k+¢;l¢11) Lem >

A4E in the two states (zero order energy is
degenerate!).

EW of Eq. (51) corresponds to V(I)+L
(1), except with minor difference in coeffici-
ents included in L(1). In a strong field, by
definition, V(I1)-+ V() is larger than L(I)
+L(II). Especially when the field gets strong
enough, even V(II) itself grows so large that
one should not simply neglect it, as E does.
The trouble is, this very E® is supposed to be
used in a strong field, according to the classical
crystal field theory.

As one sees from the dependence of g, ..* on
I', S, and m, there is no such thing, especia-
lly in a strong field, as 10 Dq which is com-
mon to all the states characterized by I”, S and
m. In a weak field, however, one may give a
significance to the parameter, because in this
case V(II) is the least influential term in the
expression of AE.

But, on the other hand, in the weak field,
L(1)+LAD is larger than V(I)+ V{I), by
definition. Thus one has no reason to simply
neglect L(II) as the conventional crystal field
theory does. In fact L(II) is the one which
modifies the Condon-Slater Integral, F~

But, still the 10 Dg and F* s have been used
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as empirical parameters, and by doing so, cry-
stal field theory explained and clarified energy
states of so many complexes. How should we
explain? The answer for this is to give a new
(though probably approximate) theoretical exp-
ression which is common to all the states cha-
racterized by I", S and m.

Suppose #;=Ry(r)weu (8, ¢) and ap=Ry(r)ay,
(0, ¢) which correspond to ¢, and ¢5, # Then
one-electron total perturbation energies due to

0

2 may be written as

A ="Cuy v° |1y + gukvk><u1 ! W :leuwo‘l
=y | 0°° g + | 0°4 oy +;Z:‘ 2um> (56)
o= Carl oM@y + oMt Basd  (67)
where v; and $; correspond to g.,* in Eq.
(52). Since {uy|v°°u> and {ay|v°°|ay) are

identical (it inffuences only on the “center of

gravity” on splitting), one has

dey— de,= <R, R°*| Ry o lw®] 0140
(o160 w1} 4 TCRR R

Kol o®Hoppvi— o, |0 e B (58)
24zs,+34de,=5(R;| R°° | R}> + :ZZ:<R1|R°4 | Rp>

{24w1 | 0wy vp+ 3wy, | 04 ) B (59)
Now, one assumes that
w=8=yri for all ', S, m (60)

and restricts % to nd functions so that

3d 4d 5d 6d (61)

The assumption means to allow equivalent ra-
dial distortion to five 34 orbitals and no angular
distortion. Then from Egs. (58) and (59)

d
dea— de,= Ry | R°*| Ryt 2 Rey oy (62)
24e,+34e,=5(R;|R°° | Ry (63)

where % is a simple constant. Taking

Aey— A4e,=10D, (64)

one obtains, from Eqs. (62) and (63),

AEu‘—"GDq‘*‘ <R1 IROO |R1> (65)
deg=—E D+ <Ry |R°° | Ry (66)
where {R;|R°°|R;> is the “center of gravity”.
From Eqs. (51) and (52), with the same

assumption as above, one obtains typical elect-

ron interaction integrals such as
wDa@ L] 6 0ea@)
12

and
d

aa@)E 1b(De @) + 5

k=2

(61(1)ei(2) +0, (Ve ()} rey

which one is going to compare. If one factors

)

the common angular integrals out, there result

RiDR@) 5 IRR@Y=F" (67)

RDRD -5 IRORD + 2

>

{Ri(DR(2) +R:(DR (D)} rp=F" (68)
where F* of Eq (67) is the Condon-Slater in-

tegral if a trivial constant multiplied to it. As
one sees now that “the free ion values, F*
(given by Eq. (67))” should be not adequate
in a weak field, and the empirical parameters
one uses are, in fact, F* of Eq. (68).

In short, the introduction of the excited con-
figuration interaction to crystal field theory, in
limited sense .of equal radial distortion and no
angular distortion, leads to the simple scaling
of classical crystal field parameter 10 Dg and

F» Condon-Slater parameters.

IV. CONCLUSION

In the present paper the Integral Hellmann-
Feynman Theorem is generalized to give a full
significance to the off-diagonal form, placing
an emphasis on degenerate case. The generali-

zed theorem is then successfully applied to see

Journal of the Korean Chemical Society
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the effects of configuration interaction on the
crystal field theory. It is shown that the con-
tributions of excited states to the perturbed
states of (34)? configuration via the crystal field
V° and 1/r, are linear and extents of contri-
butions are different from states to states when
the perturbation energies of all order are colle-
ctively taken into account. Thus there simply
do not exist radial integrals which are common
to all states characterized by 77, S and m, and
could be perametrized. However if one allows
only angularly undistorted and radially equally
distorted excited configurations to get mixed in,
then there result radial integrals common to all
states. It means the parameters of the traditio-
nal crystal field theory, such as 10 Dg and F”,
automatically include, when they are replaced
by empirical data, some of the effects of confi-

guration interaction.
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