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Abstract The Faddeev-type equations for systems of more than four particles are derived from
weinberg’s equation. The derivation is considerably simpler than that by others. The Faddeev-type
equations thus derived can be expressed in a matrix form and the rules for constructing the
inhomogeneous term and the matrix kernel of the matrix integral equation are formulated and
verified explicitly for N=3,4, and 5.

formal.
Introduction Weinberg® obtained an equation for an
The N-particle Faddeev-type equation is very N-particle system that has only the connected
useful for certain discussions of many-body diagrams in the kernel so that the iterative
problems, e. g., theory of transport processesl. solution would not lead to a divergence
Such an equation for a four-body system was difficulty. Although formally correct, Weinberg’s
derived by several authors 2345 by extending equation is not as convenient as Faddeev's
Faddeev’s® original idea. Their derivations equation even for three-particles.
were invariably complicated. Rosenberg” and In this note we present a derivation of
Yakubovskii® also obtained the N-particle Faddeev-type equations for systems of particles
extension of Faddeev’'s equation. In the former’s for N>>4 from Weinberg's equation. It turns
derivation the actual structure of the kernels is out that the derivation of such equations from
obscure and in the latter’s derivation it is rather Weinberg’s equation is far simpler than other
high-browed mathematically and prohibitively derivations.

*Supported in part by the grants from National Since the Faddeev-type equation to be derived

Research Council and the Ministry of Education, is a set of coupled equations, it is useful to
Quebec. cast the set in matrix form. For this purpose
**Alfred P. Sloan Research Fellow it is necessary to define a matrix kernel of the
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matrix integral equation. For the case of N=3
it is rather simple to obtain the matrix kernel;
Its diagonal components are zero while the off-
diagonal components are twobody T-matrices in
off-energy shell. For N>>4 the structure of the
matrix kernel is not so obvious and simple to
visualize, since the equations become progress-
ively complicated as N increases. Because of
the obvious usefulness of the matrix form of
the equations for investigation of some approx-
imation schemes that may be attempted for
systems of more than four particles in future,
we formulate, based on Weinberg's equation,
a set of rules to construct the elements of the
matrix kernels for N>>4. These rules make the
construction of the kernel a simple mechanical
task. Thus formulated rules will be verified
for N=3,4, and 5.

Derivation of Faddeev-type Equation

It is necessary to develop notations in order
to facilitate the derivation of the Faddeev-type
equations for N>>4. In many-body problems it
is useful to express Green’s functions {operators)
G, in terms of cluster functions C, where S
denotes the set of particles 1,2, -+-N,

N s)

G, () =3 oy 5 Cs.(3) *Cu (&) *++*Cs(2), (L 1)

m=1M. (52

where z is the complex energy and Sy, Sg, ***Sn
the clusters the
i. e., S=8,USU---US,,.
The asterisk *denotes the convolution of

a set of particle indeces of
mnion of which is S,
two
or more disconnected clusters Cg,, Cs,, etc. For
example, if we denote the particles by 4, j, &, +++
then

G=C/
G;=C;+C*C/
Gijp=Cij+Ci*Co+Cy*C;+Ci*C;
Giin=Ciju+Cii*Ci+Cii*Cp+ i *Ci+C*C;
+Ci*Cut+Cu*Cii+Cy*Cy

4

E
+Ci*C*Cr+Cy*C*C+Cy*Ci*C,y,
+th*c,~*C1 -+ le*C{*C;. + C“*C.g*Cj
+C*C*C*Cy, (IL. 2)
etc.

By inverting these relations {II.2), we obtain
C; in terms of Gg,,

S

—
!
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—
E}

1

—
~
2

Cs (z) ’—‘MZ_I':

m (s

where

GSsz"'S- (Z) = (Z—Hs,—Hs,— ‘“—Hs.) —1, (H- 4)

with Hj, defined by the Hamiltonian of the

cluster 7. The irreducible kernel I5(z) is
defined by
Is(2) =% 33 C5' () *Con (&) Vi (IL5)

where the sum runs over all possible ways of
dividing the systrm § into two disjoint clusters
S’ and S’’, and Vg~ is the sum of all Vi; s,
the two-body potentials, with the particle i in
S’ and the particle 7 in S’’. Thus two disjoint
clusters Cg. and Cs. are linked together by the
potentials in Vs~ to form connected diagrams.
With I;(z) thus defined, the cluster Cgs(2)

can be expressed as follows:
Cs (2) =15 (2) Gs (2) (IL.6)

which is Weinberg’s equation. On substitution
of Gs(z) in the form of (I.1) into (I #6),

we can obtain an integral equation for Cs(z)
with the kernel consisting of connected
diagrams only. This equation is called

Weinberg’s integral equation.
Now we define the T-matrix for a group of
particles imbedded in free particles as follows:

Gij (2) =G, (2) +G, (2) T (2) G, (2),  (IL.7)
Giit (2) =G, (2) +G, () Tix () G, (2), (IL.8)

Gs(2) =G, (&) +G, (&) Ts ()G, (z).  (IL9)
Here
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Gyle) = (e—33 H)™ (IL 9)

with H; defined by a single particle Hamiltonian.
Therefore G,(z} is the Green’s function for N
free particles and hence the T-matrices are
defined in the N particle space.

It is now important to note that the cluster
functions may be given in terms of irreducible

T-matrix, 95 as follows:

Ci=G, TG,y Ty=5y  (I.10)
Ciin=GoT iisGo, (IL. 11)
Cg—GJsGo, (II. 12)

where
fij);:T;jl,—T;i*'T;k_Tjj, (1. 13)
fs—TsZ E T §15200s (1. 14)

m=2 M [(Sa

where the sum runs over all ways of dividing
the system S into m disjoint groups of particles.
We have divided the sum with m since m
Sm give rise to
The operator

different arrangements of Sy'Sy-
the same irreducible T-matrix.

T sis.s. 1s defined by the equality
Csx*csz*".*CS-:GO‘T&Sz“'S-Ga' (11- 5)

For example,

C12*C3=GoT 12:3Go; T 12;3=T13,

and

C1*Ca=G,T 124G,
where

T 1z39= Tz — Tra— T
Since

VsGs=TsG,,
and Vs is a sum of the pair potentials of the

(€F))
system S, we may define T such that

Gy

V,'st= Ts Ga.
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Then we can write
(e
VS'S”GS=; Ts Gus

where the sum runs over all a= (ij) such that
ieS’ and jeS'. The
Js and S g5+ may be given by

irreducible  T-matrices

(a)
T~ T (IL. 16)

and
(@,
fs'su='; Is's (H 17)

When (II.10) —(IL. 17) are made use of, a set
of coupled equations for .9°5“can be obtained,

@ 1
Tt =5 ]

s's’

(a
38,87 G, T (I.18)
s's #a

3 (asS", S”)={1 if aeS’ or aeS”

0 otherwise, (IL. 19)

Since
T =T =5 153" (08,50, 8) S vsws.
(IL. 20)

where

. _(1if a=S8; or Sy--or S
5 > ’ 9 ** %y m/ .l 2 m
(@512 +++,5) {O otherwise,

we obtain the following coupled equations for
TS(G),

(a) N-1 1 (s)
=m [3.15 (a;8182+++8.,) -7(”5152"‘3.
1 roQer (= &
+5 Za(a;S9S )f GoZTS )
2 87§ s's A#a

(. 21)
which is the Faddeev-type equation for the
system S=(1,2,++'N). This is
N(N—1) /2 coupled equations. It is convenient

a set of

for various reasons to cast (II.21) into a matrix
form. For this purpose we define column
vectors of order N (N—1) /2,

— (12) ( 22y
TS—{TSly TSLT)’ =t TS ] ’ T(NIN,}’

(11. 22)
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TSD: {-Z; —1;,' o) 0 (a;SI) SZ’ ) Sm) foSz'“S-’ ".} ’

(IL. 23)

and%N (N—-1) x —%—N (N—1) square matrix M
such that

M==[O M(12---N[ij;kl)]

M{12---N|4;ij) 0 (IL. 24)

The matrix M has no diagonal components and
M(12:--Nij;kl) is the (af)element (a=ij, 8=
k) pertaining the particle pairs ij and %. A
rule of constructing the element M (12:--N|ij;kl)
will be given shortly. With the definitions of
(. 22) — (II. 24) (II. 21) in
a matrix form.

we can express

Tsr TSD"}‘MGL,TS' (II- 25)

We now formulate the rules of constructing

(I. 25)
verify their correctness by taking N=3, 4,5 and

without proof. It is however, easy to

comparing them with the equation obtained
directly from (II. 21).

Rule 1. The inhomogeneous term T,,%? is
(é7)
disjoint

given by the sum of all the possible
components of 5~ operators for the
systems Sy, Sy, S, of S such that the pair (¢j)
is contained in one and only one subsystem S,

N-o1 1 sy G

Tsp(ij)z Z 5.8, Sae

=2 M ()

(1. 26)

Rule 2. Let 4,7, and q be the particle
index, respectively. Then the elements of the

matrix kernel M are given by

Gi)
M(12-+ij-pgNlijipg) =555, (IL.27)
where the sum runs over (ij) components of

3

7 operators for all the possible two disjoint’/

clusters obtained from the system § by dividing *

it as follows: LetS;US;=S.
{a) If either one of p and g are equal to
either one of 7 and j, e. g., if ¢=p then it

must_be that i, jeS; but ¢eSy or 4,  jeSy

s
but geS;.
(b) If neither one of p and g are equal to i
and j, then it must be that 4,7, peS;, but

geS; or 4,7, geS;, but peS, and vice versa.
The case in which peS; and ¢eS, or peS;

and ¢eS; simultaneously is not allowed. The

factor 1/2 in (II. 26) is there to account for
i) [CF]

the fact that 9 5,5,=7 s:5..

It is easy to verify these rules by constructing
the Faddeev and Faddeev-type equations for N
=3,4, and 5,
them with those derived by alternative method.

rerpectively, and comparing
For N=3, there are only three ways to
and 3 into two
(12) @), (1) (23),
Therefore by the rule 1 we

divide the particles 1,2,
disjoint clusters. That is,
and (13) (2).
obtain
T{=98%=Ty, G, j,4=1,23).
According to the rule 2, we obtain
M (123|ij;jk) =5 ,,5=T;;
M (123|ij;ik) = .;.5 =T}
and thus the matrix M may be written
M:{O Ty leJ

TIS 0] T13
Ty T3 O

This is the kernel of the Faddeev equation for
N=3.

For N=24, the particles 1,2,3, and 4 may

be grouped as follows: (123) 4), (124) (3),
(134) 2), (234) (1), (12) (30, (13) (24),
(14) (23), (12) (3) 4), (13) (2) (4), (14) (2) (3).

(23) (1) (4), (24) (1) (3), (34) (1) (2). Therefore

according to the rule 1 we obtain
ng'j',)=T,'j+.7',(f,"‘;),. +5’:5’i?: +~7«(;"{.)k

where ¢, j, £,{ are the particle indeces and used

cyclically. There are 7 ways of dividing the

(123)
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@), (124) (3), (134) (2), (234) (1), (12) (34),
(13) (24), (14) (23). Therefore the elements of
the matrix kernel are given by
M (1234 14f;ik) =5 0+ 750 (U4, 5, F)
M(1234l1'],kl) 2.7-(".;‘}1);1 Ay (i, Jik, l)

This kernel agrees with that constructed from
the Faddeev-type equation for N=4 obtained
by Alessandrini * Mishma et al ® Mitra et al 2
and Weyer 3

For N=5, the inhomogeneous terms of the
matrix equation (II. 25) are

Tsf =T+ T 1t T e+ 00
F Tt TG+ T s
F T 1+ T s+ T s
(iklm=1, 2, 3,4, 5) (IL 28)
and the elements of the matrix kernel are
M (12345|ij;kl) =T P + T i
F Tt TG ks
(& j7k, 1)
M (12345 ]i755k) =9 s+ T2 mi
TR+ T (GER).
(I1. 29)

It is easy, although tedious, to check (II. 28)
and (IL. 29) against the result obtained directly
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from Weinberg’s equation. It is found that
they agree with each other.

In summary, we have derived the Faddeev-
type equation for N-particle system form
Weinberg's equation. Owing to the heuristic
and lucidity of Weinberg’s derivation of his.
equation, the present derivation of the Faddeev-
type equation is considerably simpler and easier

to understand than other derivations.
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