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Abstract A general method of calculating the frequency shift due to lattice defects is developed
for a one dimensional lattice with an arbitrary number of lattice points.

The method is based on the Fourier transform of the equation of motion. It is shown that the
frequency spéctrum is determined by the roots of 5X5 secular equation, the coefficients of which
depend on defects in the mass and the force constant as well as the number of the lattice points.
For the limiting case of infinite lattice, the dimension of the secular equation reduces to three and
the result agrees with that of Montroll and Potts.

perturbation method. However, this is not

Introduction

The frequency distribution for the normal
modes of vibration of a lattice with defects
(impurities, holes and interstitials etc. ) exhibits
a discrete spectra in addition to the band

spectra as shown schematically in Fig. 1. The

applicable for the localized frequency shift.

Lax and Smith! calculated the frequency
shift by using the method developed by Koster
and Slater? in the calculation of electronic
energy levels in a metal with defects. Later,
Montroll and Potts %%° developed a theory
by which one can calculate the localized fre-
quency as well as the self energy of a defect

W . .
0 and the interaction energy between defects.
This theory gives a simple algebraic equation
_ for the localized frequency in the case of an
5 (A.JL O.)L

”
£

Fig. 1, Frequency spectrum of
(a) Perfect lattice
(b) lattice with defect
Wi=Maximum frequency
Wp=Discrete frequency for localized
mode

frequency shift due to lattice defects in the
band is small and can be calculated by the

infinite lattice but a series expansion formula in
the case of a finite lattice®.

In the present work, we shall derive a simple
algebraic equation for the localized and non-
localized frequencies for a one dimensional finite
lattice with defects. This kind of problem arises
for example, in the calculation of normal mode
frequencies of a linear hydrocarbon with a double
bond or a subtituent, for these could be consi-
dered as defects in the corresponding normal

hydrocarbon.
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The frequency distribution of a defected
lattice in one dimension. Consider the small
vibration of a one dimensional lattice on N
atoms with the same mass M and the same
harmonic force constant 7 except for the s-th
atom which has the mass M+4M and the
force constant 7+4r. With the assumptions
of the nearest neighbour harmonic approxim-
ation and the free boundary condition, the
Lagrangean L of the system may be written as,

L=—%—Mi§i?+—]2'—AM:i:2
N-—-1

— 57 2 (zin—xi)?

i1

—5d4r [(x:—xs-l)2+(xs+1—x:)2] (1)

DN

D=

where z; is the displacement of the i-th atom
from its equilibrium position. The equation of

motion is given by

= Mij+7(2je1— 2%+ ;) = A7 (21— 2,)85.,-1
-+ [AM.iS—‘AT(.’l',+1_“2-Ts+xs—l)] 51":
+ A7 (Z31—2,)8ist1 @

with the free boundary conditions
To=1I1, IN=IN+1

In eq. (2), 4;, is the Kronecker delta defined
by

5 _{ 1 j=s
L.s 0 ji\’;s

As usual, we put
zj=uje™™, i=+—%

Then eq. (2) becomes
MuwPu;+1(ui—2ui+ui_y)

=A7 [us-l - u,] 51'-:— 1
- [Aszu: + Ar(uﬁ-l - 2”5 + (28 1)] 5j-s
+Ar(us+l—us)5f-s+l (3)

where
j=1,2, sssesssenses N and
wy=u,, UN=UN+1

In order to simplify the set of differential

equations, we introduce the Fourier transform
of u; by

U= Fueise @

Then, eq. (3) takes the form
(Mw?+2r(cosp— 1)) U
=TYu;(1—e"*)
+ Tuy(emiNHDE_ gine)
+ 47 (g1 —u,)e i
+ (AMw?u,+ A1 Cupyy— 20, + 2, 1)) e 5°
+ A7 Cugr1—u,)e i VP 6))

where we have assumed s31, N in order to
eliminate the boundary condition. It is a simple
matter to solve separately the case where s=1
or N.

We note here that on the right hand side of
eq. (5) there appears only uy, w1, %, w41,
uy.

In order to obtain u;, we use the Fourier in-
version,

Then, from eq. (5)

wi=wy(I;i— I +uy(y-jo1—In-7)

47
T w1 ja—1,-)
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+ U E‘%szls-j

Ar
+—T—(Is_j_1—'2lg-i+ls—i+l)ﬂ
Ar

+Tus+l(Is-f+1_Is-f) (7)
where
. T 2= eivq!
L 27 Jo  Muw?+2r(cosp—1) dy ®

Obviously I,=I_,. The integration may be

carried out by the contour integral,

I=__1__ zlvldz
* 2ni J (zt+e?)(z+e?)
= (=)™
2 sinhg ®

where the contour ¢ is given in Fig. (2) and

¢ is defined by

Me? __cosh ¢ (=1 ¢=20
27 <1 ¢=immaginary (10)

We shall see later that the real ¢ describes
the localized frequency. It may be worthwhile
to discuss how to determine the contour C.
When ¢ is real, there is no difficulty in defin-
ing the contour C. When ¢ is immaginary,

however, there exist four ways of drawing the
1
/ \L ' —é”f.‘, \\
~t‘-z - v s
e \jem—z _Ekj

(i) Real #

(i) Imaginary &

Fig 2. The contours C on Z-plane
contour. It turns out that only the contour
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defined in Fig. (2) yields the analytical con-
tinuation of the case where ¢ is real. The

result thus obtained is also the physically

meaningful one.
Now eq. (7) may be written in the form

uj=Ajmur+ Ajnun+ Aj 11,1
+Aj,,u,+Aj.,+11l,+1 (11)

where the coefficients Aj;, are defined by the
corresponding terms of eq. (7). In order to
simplify the explicit forms of A;,, we put

z=—C* a2
Then

L=z""/(2?~1) as

Thus we obtain for A;,

Aj=a;./(z+1) )]

where a;., is given by

aj. =1/,
ajy=z""i*,

—kx*~i for s>j
ajs-1=

L kzi~**1 for s<j,
(m—k)z"i(x—1) for s>j
(m—2k)x—m for s=j
(m—k)xi*(z—1) for s<j
[ Rzt for 52§

ai”ﬂ_l —kzi™* for s<§

aj.s=

and here

m=AM|M, k=dr]T



168

We may write eq. (10) as follows

(z+Duj=3a;u,;

v=]1, s—1, s, s+1, N (15)
where j runs from 1 to N as before. If we
restrict j=1, s—1, s, s+1, N, then {aj;}

become a 5X5 square matrix given by

z a2V —kz! (m—R)x" i (x—1) kx*
J zV z Bz (m—EB)z¥(z—1) —kx”"l
={ 2571 N2 —px (m—E)z(z—1) k2?
l zt 2Ntk (m—2R)z—m kx }
2ot N ka2 (m—E)a(z—1) —kz

16

To obtain the condition for eq. (15) to have a
non trivial solution for g, the coefficients must
satisfy the following secular equation,

detla—(z+1)I|=0 an

where I is a unit matrix. This is the algebraic
equation of z which we are looking for. This
may be written explicitely as follows,

—1 ¥ —kz! (m—RB) "1 (xz—1) ka2? =0

V¥ —1 kNt (m—B)xV¥ e (x—1) —kx"t

7l Vst —(k+Dzx—1 (m—E)z(x—1) ka?

zt ¥ kxr (m—2h—1)z—(m+1) kx 1

2t 2N kx? (m—R)z(z—1) —(k—l—l)z—ll
as)

then the
frequency w is given from egs. (10) and (12)

Once we solve this equation for =,

as follows

A C it V5

M z 19

For the localized mode, we have from eq. (10)

l=—

(L"_>2=cosh2¢/2>l; w? =2 @0
w

; =T
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This
means that |z|<1 from eq. (12). Accordingly

so that ¢ must be real and positive.

for a large N we could use an iteration method
to solve eq. (18) starting from z¥=0. When
N is small, obviously there is no difficulty in
solving the equation.
In the following, we shall apply Eq. (18)
for two special cases:
1) The perfect lattice; (m=~k=0),
detla—(z+ 1D I|=(z+1)°

V=0 (@D

xy -1

The roots from the factor €z+1)3 are redun-
dant. These are introduced from the transfor-
mation a;,=A4;,(z+1). Accordingly

=1

which yields the well known frequency distri-
bution of one dimensional lattice with free
boundary condition 2

21

w2=_M-(1+cosn—]$>, n=1,2, N (22

ii) The localized mode of infinite lattice

Since 2¥—0, as N—oo, eq. (18) reduces to

the following after a trivial simplification,

~CG+Dz—1 (m—Bx(z—1) k2® (=0
kx (m—2k—1Dz—(m+1) kx (23)
k2! (m—Bz(z—1) —CG+Dz—1

which is the equation first derived by Montroll
and Potts 5.
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