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요 약. 연속시간 무작위 운동자의 반응이 없을 경우 동력학과 반응이 있는 경우 반응 동력학과의 정확한 상관관계

를 보고하였다. 이 상관 관계는 연속시간 무작위 운동자가 그 공간적 위치와 운동의 방향에 따라 다른 운동 성질을 가

지는 경우에도 성립한다. 이 결과의 적용범위는 무작위 운동자가 한번에 일정한 거리만 움직이는 경우뿐 아니라 보다

일반적인 경우에도 적용할 수 있으며, 일차원 계와 더불어 등방성을 가지는 다차원 계에도 적용할 수 있다.

주제어: 연속시간 운동자, 반응 동력학, 반응속도, 일반화된 확산방정식

ABSTRACT. We report an exact relation between the survival probability, the revisit time distribution, and the reac-

tion-free propagator of the continuous time random walker. The relation holds even for such a general case where the

random walker has a distinct jump dynamics at each lattice site, which may be dependent also on the direction of the

jump. The application range of the obtained relation is not limited to the nearest neighbor hopping in the bulk lattice

either. The result is applicable to a higher dimensional system with the spherical symmetry as well as it is to the one-

dimensional system.
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Equation

Stochastic processes are ubiquitous inbiological,

chemical, and physical system. Continuous time

random walk (CTRW) has served as a convenient

mathematical model to describe a wide variety of

stochastic processes.1-5 Recently, generalizations of

CTRW were made to encompass the situation where

the random walker suffers a reaction.6

The continuous time random walker (CTRW)

model has been used to describe a wide range of

stochastic transport phenomena. The CTRW is

characterized by the waiting time distribution ψ(t)dt,

which denotes the probability that a random walker

that arrived at a lattice site at time 0 jump to one of

adjacent lattice sites between t and t+dt. At times

much longer than the mean waiting time, the

dynamics of CTRW model satisfies the well-known

universal transport equations such as the diffusion

equation and the Fokker-Planck equation irrespec-

tive of the detailed functional form of ψ(t). On the

other hand, when t ≤ < t
w

>, the dynamics of the

CTRW deviates from the universal transport equa-

tions and it depends on the detailed functional form
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of ψ(t) without any universality. It is known that

transport in arbitrary heterogeneous media can be

mapped onto the CTRW model, and the mean wait-

ing time, <t
w
> increases with the heterogeneity of

the medium in which the transport of CTRW occurs.

Therefore, the dynamics of the CTRW reduces to

the universal diffusion later in more heterogeneous

environment. A couple of decades ago, Kenkre et

al. obtained a generalized master equation that pro-

vide the exact description for the dynamics of the

CTRW from the short time regime, which, of course,

reduces to the universal diffusion equation at long

times. Recently, for a specific model of CTRW,

Klafter and coworkers obtained the fractional Fok-

ker-Planck equation that describes anomalous diffu-

sion in the presence of external force field. 

However, the rigorous derivations of these equa-

tions have been carried out for a system in the

absence of boundaries, while many interesting sys-

tems in nature involve a reaction at a boundary of

the system. In conventional approach, the effects of

the reaction at the boundary were taken into

account merely by imposing either the absorbing

boundary condition (ABC) or the radiation bound-

ary condition (RBC) on the hydrodynamic limit

transport equation, of which validity has been a

controversial issue.7 The result of the conventional

approach with the ABC has an unphysical singular-

ity at time 0,8 and Naqvi, Mork, and Waldenstrøm

showed that, in thehydrodynamic limit, the Brown-

ian motion in the presence of an absorbing sphere

reduces to the conventional approach with the RBC

instead of the ABC.9 Nevertheless, van Kampen

and Oppenheim showed that the ABC rather than

the RBC gives thecorrect hydrodynamic descrip-

tion of random walk in the presence of a reaction at

a boundary.10

In the present work, we investigate the dynamics

of CTRW model in the presence of boundary, with-

out introducing phenomenological boundary condi-

tions such as ABC or RBC. We consider a general

CTRW model in which the random walker has a

distinct jump dynamics at each lattice site, which

may be dependent also on the direction and the dis-

tance to the destination site of the jump. The only

constraint in this model is that the random walker at

boundary can jump back to the nearest neighbor

site only unless it suffers a reaction at the bound-

ary. For the general model, we derive an exact rela-

tion of the survival probability and the distribution

of the n-th arrival time to the boundary to the reac-

tion-free propagator of the random walker. The

result is applicable to a higher dimensional system

with the spherical symmetry as well as it is to the

one-dimensional system. 

At first, we consider a random walk on a one

dimensional lattice in the presence of a boundary at

the leftmost site labeled as site 0. The other lattice

sites are denoted by the series of increasing posi-

tive integer, n from left to right. The number of lat-

tice sites can be arbitrary. Let a random walker is

created at n=m initially. Subsequently the random

walker repeats a jump process in the lattice until it

arrives at the boundary, site 0. At site 0, the random

walker either suffers a reaction or escapes back to

site 1 and repeat the jump process again. In our

model, except when it is located at boundary, the

random walker can jump to any sites in the lattice.

The dynamics of the random walker can be com-

pletely specified by a set of waiting time distribu-

tion function, ψ
nm

(t), where ψ
nm

(t)dt is the probability

that a random walker makes a jump from site n to

site m in time interval (t, t+dt) given that the ran-

dom walker arrived at site n at time 0. For all site n

except site 0, ψ
nm

(t) satisfies the normalization con-

dition: . In the absence of a reac-

tion process at site 0, the dynamics of the random

walker at the boundary is completely specified by

ψ
01
(t), which satisfies  with ψ

0
(t) =ψ

01
(t).

In the presence of a reaction process at boundary, in

addition to ψ
01

(t), we need to introduce the reaction

waiting time distribution φ(t)dt, which denotes the

probability that the random walker undergoes a

reaction in time interval (t,t+dt) given that the ran-

dom walker arrives at the boundary at time 0. For

the latter case, the normalization condition at site 0 is

given by  with ψ
0
(t) being ψ

01
(t) + φ(t).

For the general CTRW model, we will first

derive the relation of the k-th revisit time distribu-

tion and the Greens function in the absence of a

tψnm t( )d
0

∞

∫
m n≠

∑ 1=

tψ0 t( )d
0

∞

∫ 1=

tψ0 t( )d
0

∞

∫ 1=
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reaction process. The first arrival time distribution

h
0
(t|m)dt denotes the probability that the random

walker initially located at site m arrives at site 0 in

time interval (t,t+dt). In comparison, the Greens

function G
0
(t|m) denotes the probability that we find

the random walker at site 0 given that the random

walker was initially at site m. If  denotes the

Laplace transform of x(t) with ubeing the Laplace

variable, the Greens function can be represented as: 

(1)

where Φ
0
(t) is the probability that the random

walker arrived at the boundary at time 0 does not

jump until time t and f
k
(t|m)dt denotes the proba-

bility that the random walker initially located at m

arrives k times at site 0 in time interval (t,t+dt).

Φ
0
(t) is related to ψ

0
(t) by Φ

0
(t) = , which

reads as 

(2)

in Laplace domain. In turn, f
k
(t|m) can be repre-

sented in terms of h
0
(t|n) as:

(3)

Substituting Eq. (3) into Eq. (1), we obtain

(4)

From Eq. (4), we can also express h
0
 in terms of G

0

as follows: 

(5)

By noting that  , we

recover the well-known relation from Eq. (5) as:

(6)

Note that Eq. (6) holds always in the absence of

reaction as far as the jump of the random walker is

a renewal process.

Now let us consider the situation in which the

random walker suffers a reaction at the boundary. If

S(t|m) denotes the survival probability of the ran-

dom walker initially located at site m, the reaction

rate, -∂S(t|m)∂t, is given by 

(7)

so that we have the expression for the survival

probability as:

(8)

Eqs. (3)-(5) and (8) constitute the key results of the

present paper with the well known equation, given

by Eq. (6). 

One of the important advantages of this approach

is that it can deal with the system in which the reac-

tion and the transport are arbitrary non-Poisson pro-

cesses as well. When the observation time-scale is

much longer than the average sojourn time at iden-

tical hydrodynamic volume elements, the dynam-

ics of any non-Poisson transport model is in

qualitative agreement with that of a Poisson trans-

port model, irrespective of the details of the non-

Markovian transport model. This is because the

correlation between jump events becomes negligi-

ble in a time much longer than the average sojourn

time. However, the average sojourn time increases

with the heterogeneity in the environment so that it

can be comparable to or even longer than the obser-

vation time-scale in strongly heterogeneous or dis-

ordered media. In this case, the relaxation dynamics

loses its universal character, and is dependent on the

details of the correlation between jumps as described

by the sojourn time distribution. Especially when

the reactant transport is subdiffusive,3,17 or when the

average sojourn time is infinite, the exact result

never reduces to that of the conventional Smolu-

chowski approach based on the Poisson transport

model or its simple generalizations, even at asymp-

totically long times. 

We finish this letter by noting that the obtained

results is applicable to a higher dimensional system

x̂ u( )

Ĝ0 u m( ) Φ̂0 u( ) f̂k u m( )
k 1=

∞

∑=

dτψ01 τ( )
t

∞

∫

Φ̂0 u( )
1 ψ̂01 u( )–

u
-----------------------=

 f̂k u m( ) ĥ0 u m( ) ψ̂01 u( )ĥ0 u 1( )[ ]
k 1–

=

Ĝ0 u m( )
Φ̂0 u( )ĥ0 u 1( )

1 ψ̂01 u( )ĥ0 u 1( )–
----------------------------------------=

ĥ0 u m( )
Ĝ0 u m( )

Φ̂0 u( ) ψ̂01 u( )Ĝ0 u|1( )+
------------------------------------------------------=

Ĝ0 u 0( ) Φ̂0 u( )= ψ̂01 u( )Ĝ0 u|1( )+

ĥ0 u m( )
Ĝ0 u m( )

Ĝ0 u|0( )
-------------------=

Ŝ
.

u m( )
φˆ u( )ĥ0 u m( )–

1 ψ̂01 u( )ĥ0 u 1( )–
----------------------------------------=

Ŝ u m( )
1

u
--- 1

φˆ u( )ĥ0 u m( )–

1 ψ̂01 u( )ĥ0 u 1( )–
----------------------------------------–=
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with the spherical symmetry as well as it is to the

one-dimensional system. 
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