$\mathrm{Cu}(\mathrm{hfa})_{2}(\mu$-1,4-dicyanobenzene) and $\mathrm{Cu}(2,13$-dioxoOEiBC)의 합성과 특성 분석

유종남•강성주*
한국교원대학교 화학교육과

(2004. 3. 2 접수)

Synthesis and Characterization of $\mathrm{Cu}(\mathrm{hfa})_{2}(\mu-1,4$-dicyanobenzene) and $\mathbf{C u}$ (2,13-dioxoOEiBC)

Chongnam Yu and Seong-Joo Kang*
Department of Chemistry Education, Korea National University of Education, Chungbuk 363-791, Korea

(Received March 2, 2004)

주제어: 구리 화합물, 체인 구조, 2,13-DioxoOEiBC
Keywords: Cu Complex, Chain Structure, 2,13-DioxoOEiBC

Crystal engineering and the design of solid-state architectures have became an area of increasing interest over recent years. The packing of molecules into arrays of beautiful structures is the result of metal-ligand interactions ${ }^{1-4}$ or noncovalent interactions (hydrogen bonding, $\pi-\pi$ stacking, etc.). ${ }^{5-7}$ With this in mind, we were interested in monitoring 1) the formation of multidimensional networks and 2) the effect of ligand bulk on the $\pi-\pi$ stacking interactions. ${ }^{8-10}$ Herein, we describe the synthesis and characterization of two copper complexes, $\mathrm{Cu}(\mathrm{hfa})_{2}$ (μ-1,4-dicyanobenzene) and $\mathrm{Cu}(2,13$-dioxoOEiBC). The $\mathrm{Cu}(\mathrm{hfa})_{2}(\mu-1,4$-dicyanobenzene) shows onedimensional chain, while $\mathrm{Cu}(2,13-$ dioxoOEiBC) shows no $\pi-\pi$ stacking interaction.

EXPERIMENTAL SECTION

General Information. All manipulations were performed under an inert atmosphere using Schlenk techniques. All solvents were distilled by standard techniques. Hhfa(hexafluoropentanedione) and $\mathrm{H}_{2} \mathrm{OEP}$ (octaethylporphyrin) were purchased from Aldrich

Chemicals and used as received. UV/Vis/NIR electronic absorption spectra were obtained on a PerkinElmer UV/Vis/NIR Lambda 19 spectrophotometer. IR spectra were recorded as KBr pellets on a Per-kin-Elmer 883 spectrometer.

Synthesis of $\mathbf{C u}(\mathbf{h f a})_{\mathbf{2}}(\boldsymbol{\mu}$-1,4-dicyanobenzene). To a benzene solution of $\mathrm{Cu}(\mathrm{hfa})_{2}(0.20 \mathrm{~g}, 0.42 \mathrm{mmol})$ was added 1,4 -dicyanobenzene ($0.054 \mathrm{~g}, 0.42 \mathrm{mmol}$). The resulting solution was refluxed for 24 h . After cooling to ambient temperature, the solution was filtered and volume of the filtrate was reduced to half. Slow evaporation of this solution gave green crystals suitable for X-ray crystallography. Yield: $0.22 \mathrm{~g}, 87 \% \mathrm{mp} 181-193{ }^{\circ} \mathrm{C}$. IR (KBr, cm^{-1}): 3380 (br, m), 2210(m), 1625(s), 1550(m), 1525(m), 1390(m), 1245(s), 1220(s), 1140(s), 1095(m), 842(m), 795(s).

Synthesis of $\mathbf{C u}(\mathbf{2}, 13-d i o x o O E i B C)$. Synthesis of $\mathrm{H}_{2}(2,13$-dioxoOEiBC), 3,3,7,8,12,12,17,18-octa-ethyl- $(3 \mathrm{H}, 12 \mathrm{H})$-porphine-2,13-dione, was based on the literature with modification. ${ }^{11}$ The crude product was chromatographed into two fractions on a silica gel column (60-200 mesh). The first fraction was collected with dichloromethane/hexane (60:40
volume) until the eluent became green. The second fraction was eluted with dichloromethane. The second fraction was rechromatographed on a silica gel column using dichloromethane/hexane (70:30 volume). The last fraction, containing H_{2} (2,13-dioxoOEiBC), was collected. Yield: 5\%. UV-vis(dichloromethane solution): $\lambda_{\text {max }} 398,410,514,550,654,688 \mathrm{~nm}$. Insertion of copper into the $\mathrm{H}_{2}(2,13$-dioxoOEiBC) was accomplished by the reaction of free base and copper(II) acetate in DMF. The reaction product was chromatographed on a silica gel column (60-200 mesh) using dichloromethane/hexane (50:50 volume). Dark violet $\mathrm{Cu}(2,13$-dioxoOEiBC) was eluted as a major product. UV-Vis(dichloromethane solution): $\lambda_{\text {max }} 403$ (soret), $600,605 \mathrm{~nm} . \operatorname{IR}(\mathrm{KBr}): v_{\mathrm{C}=0}$ $1712 \mathrm{~cm}^{-1}$.
Oxidation of $\mathrm{Cu}(2,13$-dioxoOEiBC) was carried out by the reaction of $\mathrm{Cu}(2,13$-dioxoOEiBC) with tris(4-bromophenyl)aminium hexachloroantimonate. $\mathrm{Cu}(2,13$-dioxoOEiBC) ($25 \mathrm{mg}, 0.040 \mathrm{mmol}$) and tris(4-bromophenyl)aminium hexachloroantimonate ($34 \mathrm{mg}, 0.042 \mathrm{mmol}$) were placed in a 100 mL Schlenk flask and dried for 1 h . After drying, dichromethane was added to the Schlenk flask and the solution immediately turned brown. After stirring for 30 minutes, hexane was added to the solution. The mixture was filtered, and the brown solid was dried in vacuo; the yield was quantitative. UV-Vis (dichloromethane solution): $\lambda_{\text {max }} 385,510,590 \mathrm{~nm}$. $\operatorname{IR}(\mathrm{KBr}): v_{\mathrm{C}=\mathrm{o}} 1725 \mathrm{~cm}^{-1}$.

RESULTS AND DISCUSSION

$\mathrm{Cu}(\mathrm{hfa})_{2}(\mu-1,4$-dicyanobenzene) was obtained by the reaction of $\mathrm{Cu}(\mathrm{hfa})_{2}$ and 1,4-dicyanobenzene in benzene. Suitable crystals were harvested from the slow evaporation of the benzene solution.
$\mathrm{Cu}(\mathrm{hfa})_{2}+1$,4-dicyanobenzene \rightarrow polymeric $\mathrm{Cu}(\mathrm{hfa})_{2}(\mu$-1,4-dicyanobenzene)

The molecular structure of $\mathrm{Cu}(\mathrm{hfa})_{2}(\mu-1,4$-dicyanobenzene) is shown in Fig. 1, with the F atoms of hfa anionic ligands are omitted for clarity. ${ }^{12}$

Copper atom binds to four oxygen atoms, con-

Fig. 1. ORTEP diagram of the crystal structure of $\mathrm{Cu}(\mathrm{hfa})_{2}-$ (μ-1,4-dicyanobenzene) showing the atomic labelling scheme and thermal ellipsoidal at 50% level.
tributed by two bidentate hfa anionic ligands, resulting in a square planar structure. The square planar $\mathrm{Cu}(\mathrm{hfa})_{2}$ unit is bridged by 1,4-dicyanobenzene to give a linear structure. The extended onedimensional polymeric structure of this compound

Fig. 2. Unit cell packing diagram of $\mathrm{Cu}(\mathrm{hfa})_{2}(\mu-1,4$-dicyanobenzene) showing one-dimensional chains.

Table 1. Selected Bond Lengths (\AA) and Angles (deg) for $\mathrm{Cu}(\mathrm{hfa})_{2}(\mu$-1,4-dicyanobenzene)

$\mathrm{Cu}-\mathrm{O}(1)$	$1.980(9)$	$\mathrm{Cu}-\mathrm{O}(2)$	$1.971(8)$
$\mathrm{Cu}-\mathrm{O}(3)$	$1.917(9)$	$\mathrm{Cu}-\mathrm{O}(4)$	$1.906(8)$
$\mathrm{Cu}-\mathrm{N}(1)$	$2.534(9)$	$\mathrm{Cu}(2)$	$2.549(8)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.24(2)$	$\mathrm{O}(2)-\mathrm{C}(4)$	$1.254(14)$
$\mathrm{O}(3)-\mathrm{C}(7)$	$1.26(2)$	$\mathrm{O}(4)-\mathrm{C}(9)$	$1.28(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.61(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.33(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.38(2)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.50(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.599(14)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.38(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.44(2)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.46(2)$
$\mathrm{C}(11)-\mathrm{N}(1)$	$1.14(2)$	$\mathrm{C}(18)-\mathrm{N}(2)$	$1.14(2)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	$92.7(4)$	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(3)$	$87.0(4)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(4)$	$179.0(6)$	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(3)$	$178.8(5)$
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}(4)$	$88.0(4)$	$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}(4)$	$92.3(4)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(1)$	$94.5(4)$	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{N}(1)$	$97.3(5)$
$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{N}(1)$	$83.8(6)$	$\mathrm{O}(4)-\mathrm{Cu}-\mathrm{N}(1)$	$86.0(6)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(2)$	$85.8(4)$	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{N}(2)$	$86.4(5)$
$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{N}(2)$	$92.4(6)$	$\mathrm{O}(4)-\mathrm{Cu}-\mathrm{N}(2)$	$93.6(6)$

is depicted in Fig. 2.
The $\mathrm{Cu}-\mathrm{O}$ bond distances fall into two distinctly different groups; $\mathrm{Cu}-\mathrm{O}(1)$ and $\mathrm{Cu}-\mathrm{O}(2), 1.975[9] \AA$ and $\mathrm{Cu}-\mathrm{O}(3)$ and $\mathrm{Cu}-\mathrm{O}(4), 1.912[9] \AA$. The average $\mathrm{Cu}-\mathrm{N}$ bond distance is $2.542[9] \AA$. The average ring $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angle is $92.5[4]^{\circ}$. A comparison of bond distances and angles of $\mathrm{Cu}(\mathrm{hfa})_{2}(\mu-1,4-$ dicyanobenzene) with those of other complexes containing $\mathrm{Cu}(\mathrm{hfa})_{2}$ unit, $\mathrm{Cu}(h f a)_{2}$ and $\mathrm{Cu}(\mathrm{hfa})_{2}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, is shown in Table 2. ${ }^{13}$ This reveals that the average $\mathrm{Cu}-\mathrm{O}$ bond distance of the six-coordinated $\mathrm{Cu}(\mathrm{hfa})_{2}-\quad\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, $1.990[4] \AA$, is longer than in four-coordinated $\mathrm{Cu}(\mathrm{hfa})_{2}$ compound, $1.911[7] \AA$. Interestingly, the molecular structure of $\mathrm{Cu}(\mathrm{hfa})_{2}-(\mu$-1,4-dicyanobenzene) shows two distinct types of $\mathrm{Cu}-\mathrm{O}$ bond distance, short distance with one hfa ligand and longer distance with the other hfa ligand. The average Cu -

Table 2. Comparison of the $\mathrm{Cu}-\mathrm{O}, \mathrm{Cu}-\mathrm{N}$ Bond Lengths (\AA) and $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ Angles (deg)

	$\mathrm{Cu}-\mathrm{O}$	$\mathrm{Cu}-\mathrm{N}$	$\mathrm{O}-\mathrm{Cu}-\mathrm{O}$
$\mathrm{Cu}(\mathrm{hfa})_{2}$	$1.911[7]$	$93.0(3)$	
$\mathrm{Cu}(\mathrm{hfa})_{2}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}\right.$	$\mathrm{OH})$	$1.990[4]$	$2.003(4)$
$87.7[2]$			
$\mathrm{Cu}(\mathrm{hfa})_{2}(\mu-1,4$-dicyanobenzene $)$	$1.912[9]$	$2.542[9]$	$92.5[4]$
	$1.975[9]$		

Fig. 3. TGA diagram of $\mathrm{Cu}(\mathrm{hfa})_{2}(\mu$-1,4-dicyanobenzene).

Fig. 4. The structure of $\mathrm{H}_{2}(2,13$-dioxoOEiBC).
N distance in $\mathrm{Cu}(\mathrm{hfa})_{2}(\mu$-1,4-dicyanobenzene), 2.542[9] \AA, is longer than in $\mathrm{Cu}(\mathrm{hfa})_{2}-$ $\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.003(3) \AA$, indicating a JahnTeller elongation along $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$ vector. The thermogravic behaviors of the complex have been investigated by thermogravimetry (TGA) over the temperature range $30-450{ }^{\circ} \mathrm{C} .{ }^{14}$ Atmospheric pressure thermogravic analysis of $\mathrm{Cu}(\mathrm{hfa})_{2}(\mu-1,4$-dicyanobenzene) reveals that weight loss takes place in the $100-190^{\circ} \mathrm{C}$ temperature range and shows that no weight loss after $200^{\circ} \mathrm{C}$.

The final residual weight (11\%) agrees with the composition of $\mathrm{CuO}(12 \%) . \mathrm{Cu}(\mathrm{hfa})_{2}$ has been used for the chemical vapour deposition(CVD) of copper films. ${ }^{15}$ The TGA analysis indicates that $\mathrm{Cu}(\mathrm{hfa})_{2}$ (μ-1,4-dicyanobenzene) can not be used as a CVD precursor.
$\mathrm{Cu}(2,13$-dioxoOEiBC) was obtained by the reaction of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and $\mathrm{H}_{2}(2,13$-dioxoOEiBC) in DMF.

The oxidation of $\mathrm{Cu}(2,13$-dioxoOEiBC) with tris(4bromophenyl)aminium hexachloroantimonate results in the formation of the π-cation radical, $[\mathrm{Cu}(2,13-$ dioxoOEiBC•) $]\left[\mathrm{SbCl}_{6}\right]$.

```
Cu(OAc)}\mp@subsup{)}{2}{}+\mp@subsup{\textrm{H}}{2}{}(2,13\mathrm{ -dioxoOEiBC)
    \rightarrow \mathrm { Cu } ( 2 , 1 3 - d i o x o O E i B C )
Cu(2,13-dioxoOEiBC)+oxidant
    ->[Cu(2,13-dioxoOEiBC})\mp@subsup{]}{}{+
```

The electronic spectra of $[\mathrm{Cu}(2,13 \text {-dioxoOEiBC } \cdot)]^{+}$ has a blue-shifted and broadened Soret band and the bands in the visible region have decreased in intensity. These spectral changes is characterictics for the formation of the metalloporphyrin π-cation radical. New near-IR bands have been observed in metallooctaethylporphyrin π-cation radicals, where they result from the formation of dimeric π-cation radical species, $[\mathrm{M}(\mathrm{OEP} \cdot)]_{2}^{2+}$. These near-IR bands are found at $900-960 \mathrm{~nm}$ for nickel, copper, palladium, and zinc octaethlyporphyrin π-cation radicals. ${ }^{10}$ Similarly, the π-cation radical complexes of the metallo-oxooctaethylchlorin show near-IR bands. $[\mathrm{Cu}(\text { oxoOEC })]_{2}^{2+}$ has two overlapped near-IR absorption bands at 1285 and $1548 \mathrm{~nm} .{ }^{9}$ Upon oxidation of $\mathrm{Cu}(2,13$-dioxoOEiBC), however, no near-IR band is observed in the region of $900-3000 \mathrm{~nm}$ at the highest concentration we were able to use. This observation suggests that the $[\mathrm{Cu}(2,13$-dioxoOE$\mathrm{iBC} \cdot)]^{+}$radical is monomeric because the increased number of peripheral substituents prevents aggregation of the molecule. This phenomenon is also found in $[\mathrm{Cu}(\mathrm{TPP} \cdot)]^{+}$and $[\mathrm{Cu}(\mathrm{TMP} \cdot)]^{+}$radicals. The solid-state structures of $[\mathrm{Cu}(\mathrm{TPP} \cdot)]^{+}$and $[\mathrm{Cu}(\mathrm{TMP} \cdot)]^{+}$ show no $\pi-\pi$ aggregation due to the bulky peripheral substituents. ${ }^{16}$

Acknowledgments. This work was supported by Korea Research Foundation Grant (KRF-2001-015DP0274).

REFERENCES

1. Gardener, G. B.; Venkatarman, D.; Moore, J. S.; Lee, S. Nature 1995, 374, 792.
2. Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am.

Chem. Soc. 1994, 116, 1151.
3. Zaworotko, M. J. Chem. Soc. Rev. 1994, 283.
4. Sharma, C. V. J. Chem. Educ. 2001, 78, 617.
5. (a) Kuhlbrandt, W.; Wang, D. N.; Fujiyoshi, Y. Nature, 1994, 367, 614. (b) McDermott, G.; Prince, S. M.; Freer, A. A.; Papiz, M. Z.; Cogdell, R. J.; Isaacs. N. W. Nature, 1995, 374, 517.
6. (a) McElroy, J. D.; Feher, G.; Mauzerall, D. C. Biochim. Biophys. Acta 1969, 172, 180. (b) Davis, M. S.; Forman, A.; Hanson, L. K.; Thornber, J. P.; Fajer, J. J. Phys. Chem. 1979, 83, 3325.
7. (a) Diesenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. J. Mol. Biol. 1984, 180, 385. (b) Diesenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. Nature, 1995, 318, 618.
8. (a) Lee, J. H.; Jung, Y. S.; Shon, Y. S.; Kang, S.-J. Bull. Korean Chem. Soc. 1998, 19, 231. (b) Jung, Y. S.; Lee, J. H.; Park, K.; Cho, S.-I.; Kang, S.-J. Bull. Korean Chem. Soc. 1998, 19, 699. (c) Kang, S.-J.; Lee, S. K. Bull. Korean Chem. Soc. 2003, 24, 535.
9. (a) Neal, T. J.; Kang, S.-J.; Schulz, C. E.; Scheidt, W. R. Inorg. Chem. 1999, 38, 4294. (b) Neal, T. J.; Kang, S.-J.; Ilona, T. T.; Schulz, C. E.; Scheidt, W. R. Inorg. Chem. 2000, 39, 872.
10. Buentello, K. B.; Kang, S.-J.; Scheidt, W. R. J. Am. Chem. Soc. 1997, 119, 2839.
11. (a) Chang, C. K. Biochemistry 1980, 19, 1971. (b) Sessler, J. Org. Synth. 1992, 70, 68.
12. Crystal data for $\mathrm{Cu}(\mathrm{hfa})_{2}(\mu$-1,4-dicyanobenzene); triclinic P1-bar, $a=8.129(1), b=8.322(1), c=9.079(1) \AA, \alpha=108.19(1)$, $\beta=95.19(1), \gamma=97.86(1)^{\circ}, \mathrm{V}=572.2(1) \AA^{3}$. The structure was solved by a heavy atom method and refined to R1 $=0.044$ and wR2=0.115 against 1930 observed $[I>2 \sigma(\mathrm{I})]$ reflections.
13. Pinkas, J.; Huffman, J. C.; Bollinger, J. C.; Streib, W. E.; Baxter, D. V.; Chisholm, M. H.; Caulton, K. G. Inorg. Chem. 1997, 36, 2930.
14. TGA analysis was carried out on a SETARAM TGA92 instrument. The weight of sample was between 10 and 25 mg . The measurement was performed in alumina crucibles under an atmosphere of flowing dry nitrogen, using heating rates of $5^{\circ} \mathrm{C} / \mathrm{min}$.
15. Shin, H. K.; Chi. K. M.; Hampden-Smith, M. J.; Kodas, T. T.; Farr, J. D.; Paffett, M. Chem. Mater., 1992, 4, 788.
16. (a) Song, H.; Reed, C. A.; Scheidt, W. R. J. Am. Chem. Soc. 1989, 111, 6865. (b) Erler, B. S.; Scholz, W. F.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A. J. Am. Chem. Soc. 1987, 109, 2644.
16. Abbreviations used in this paper include: 2,13-dioxoOEiBC, 3,3,7,8,12,12,17,18-octaethyl-(3H,12H)-porphine-2,13-dionato(2-); hfa, anion of hexafluoropentanedione; $\mathrm{H}_{2} \mathrm{OEP}$,
octaethylporphyrin; $\mathrm{H}_{2} \mathrm{oxoOEC}$, oxooctaethylchlorin;
DMF, N, N-dimethylformamide; TMP, dianion of tetrame-
sitylporphyrin; TPP, dianion of tetraphenylporphyrin.

