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Interdiffusion between two partially miscible polymers of similar chemical structures with different molecular
weights is characterized theoretically by using the reptation model for the interdiffusion. This model provides
more reliable results than the early Rouse model for same molecular weights, compared with the experiments.
Furthermore, by introducing the molecular weight ratio R into the reptation model, we can see the dynamic ef-
fect of molecular weight on the diffusion behaviors of the asymmetric system. Near the critical point the diffu-
sion behaviors of asymmetric binary polymer mixtures are well characterized by the interfacial width W(t), the
mass transport M(t) for the different values of the Flory χ parameter and different molecular weight ratios of
polymers of the diffusion couple. These two quantities and composition profiles by this model give better
agreement with experiments.

Introduction

Interdiffusion of polymers is a problem of considerable
interest for both basic knowledge and applications. Polymer/
polymer interdiffusion affects the mechanical properties of
polymers near interfaces. Applications include rubber-toug-
hened polymer composites, welding of polymer interfaces,
polymer adhension, and coating. Understanding of diffusion
processes in polymers is a key to successful production of
polymers and applications of polymer products in industry
because the final properties of the polymer are determined
by the thickness of the interface and the concentration pro-
file of the two polymers across the interface. While mutual
diffusion between miscible species is well understood,1 little
is known about the kinetics of diffusional mixing between
immiscible or partially miscible materials. This is of particu-
lar relevance and has both basic and practical implications
for the case of macromolecules, since most binary polymer
pairs exhibit little compatibility at accessible temperatures.2

Binary polymer mixtures are characterized by an upper criti-
cal solution temperature, and will segregate at lower temper-
atures into two coexisting phases separated by an interfacial
region.3 Recently, there has been a lot of interest in the inter-
diffusion of partly miscible and immiscible species. Typi-
cally, one prepares a thin film rich in one of the species (say
A) and a second thin film rich in the other species (say B) is
brought on top of it. The broadening of the initially sharp
concentration profile in time is of considerable interest. The
various experimental techniques have been developed for
this purpose.4-7 If polymers A and B are compatible, the ini-
tial sharp interface will be smeared out as a result of the ordi-
nary Fickian type diffusion. But two different polymers in
contact do not in general interdiffuse freely, and an interfa-
cial zone of finite width separates them at equilibrium.8-11

This incompatibility stems from a very low combinational
entropy of mixing which scales inversely with the degree of
polymerization N together with interactions between the dif-

ferent unfavorable monomers.3 The unfavorable molecular
interactions between unlike molecules are N independent
and remain comparable to those of analogous small mole
lar mixtures.

Defining the interfacial width W as related to the recipro-
cal of the maximal composition gradient across the A/B
boundary, it was found that the thickness of the interfaceW
increases with time slower than that of a Fickian process
W(t) ∝ t1/2. As the opposite of phase separation, the mixi
takes place via interdiffusion driven by thermodynam
forces. The transport phenomena in the bilayer were fo
to depend strongly on thermodynamic conditions such
temperature, interaction parameters between polymers A and
B, and molecular weights of A and B. A mean-field approach12

suggests that the exponent α of a scaling law W(t) ∝ tα may
be between ¼ and ½ near the critical temperature. Klein 
co-workers have obtained the first direct measuremen
time-dependent composition profiles at an interface betw
two partially miscible polymers A and B (deuterated and
protonated polystyrene).4,5 In the experiment of Klein and
co-workers,5 α was found considerably smaller than th
Fickian exponent ½, falling between 0.25 and 0.5.

The value of α strongly depends on the definition b
which the width W of the interface is measured. The defin
tion of maximal gradient is most sensitive to the local stru
ture of interface. A second meaningful characterization
interdiffusion is defining the amount of material M(t) of spe-
cies A transported across the interface separating A and B as
a function of time: M(t) ∝ tβ. This definition is most insensi-
tive to the local structure of the composition profile. Interd
fusive behaviors of polymer mixtures can be characteriz
by following interfacial width, mass transport across t
interface. Thus, we consider interdiffusion between pure
polymer A and pure polymer B assuming the polymer layers
are infinitely thick. Here, by using the reptation model for
the interdiffusion, we study theoretically the binary polym
mixtures of similar (not same) chemical structure (χ > 0)
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with different molecular weights, and better agreement is
found than the early Rouse model13 for same molecular
weights if it is compared with experiments.4,5,6,24

Theory of Polymer Interdiffusion

A spatially homogeneous polymer mixture consisting of
two polymer components A and B can be described approxi-
mately by the mixing-free-energy function f (φ) which is
defined as follows according to the so-called mean-field the-
ory. For the sake of simplicity, we consider the case that the
volume of the mixture does not change upon mixing. The
function f (φ ) is defined as the free energy per unit volume
of the mixture. In the mean field theory for incompressible
polymer mixtures of lengths NA and NB, f (φ ) is given by

(1)

where φ is the volume fraction of A and χ is the Flory-Hug-
gins parameter.3,14

The first two terms in Eq. (1) describe the combinatorial
entropy while the third term accounts for segment-segment
interaction energy. Since NA and NB are large and the entropy
of mixing is small, the thermodynamic driving force for
mixing is very weak and a relatively small positive Flory χ
parameter is sufficient to make A and B phase-separate into
A-rich and B-rich phases. For most A-B polymer pairs, χ is
positive and larger than χc (critical value of χ for segrega-
tion), and segregation occurs. When the mixture phase-sepa-
rates, interfaces are created between two phases. At phasic
boundaries, polymers rearrange their conformations and
repel chains of dissimilar species. This leads to an increase
in free energy of both entropic and enthalpic origins. Let us
now consider the case where the composition is not uniform.
In this case, the free energy of the whole system can be
described by the following form

(2)

The first term represents the contribution from each volume
element. The second term, which is referred to as the Cahn-
Hilliard interfacial energy,15,16 represents the cost of the free
energy due to the presence of a concentration gradient when
the composition is not uniform. The phenomenological
parameter κ has the dimension of length squared and plays
an important role in control and formation of interfaces.

In general, depending on the initial conditions, polymers A
and B may either demix through spinodal decomposition or
interdiffuse into each other. When the system is near the crit-
ical point for miscibility, mixtures cannot be perfectly phase-
separated. In the same manner, polymers A and B will be
partially mixed with each other via interdiffusion when pure
A and pure B are put into contact. But the diffusion type will
be different from the free-diffusion t½ relation. By the ther-
modynamics the mixture cannot be mixed completely and a
diffusion barrier exists. In our model, a sharp contact
between two pure polymer layers A and B is arranged ini-

tially. The thermodynamic driving forces compel the syste
to mix through the interfacial region.

Mass conservation of polymer species A gives the follow-
ing time evolution equation for φ :

 (3)

where the current is given by

 (4)

In Eq. (4), Λ(φ) is a mutual mobility coefficient and
depends on φ. The exchange chemical potential µ, which is
functional derivative of the free energy F given in Eq. (2),

 (5)

To derive the functional form of Λ(φ) at a phenomenological
level, we set the off-diagonal Onsager coefficients due to 
hydrodynamic interaction to zero.17 The cross-coefficient or
the Onsager coefficient of component A due to the gradient
of component B is only important in systems with electro
static interactions. For interdiffusion in polymer pairs with
out ionic groups such as PVC/PMMA or PS/PVME, th
cross-coefficients can be neglected.7 Thus, for highly entan-
gled linear polymers A and B, 

 (6)

where Λ0 is a monomer mobility and Ne is the entanglement
degree of polymerization for the polymers (NA, NB >> Ne).17

We here assume that the polymers A and B have same mono-
mer mobility Λ0. In this case, Λ(φ) takes the form

 (7)

where R (=NB /NA) represents the molecular weight ratio an
Λ0 is assumed to be independent of φ (r, t).

The equilibrium theory 8,10,23 for the interfacial structure of
incompatible polymer blends also produces a simple exp
sion for the parameter κ (φ ) in Eq. (2) as

 (8)

where σA, σB, assumed to be independent of φ, are segment
lengths of polymers A and B respectively. In Eq. (8), we let
σA = σB = a where a is the characteristic length.11 This is
almost true in the system which consists of protonated 
deuterated polymers of the identical chemical structure. E
(1)-(5) and (7) constitute the dynamic model for spinod
decomposition in polymer blends, first proposed by 
Gennes.9,11 Now, the local chemical potential difference µ (r,
t) is given by a functional derivative as usual

 (9)

f φ( ) = 
φ

NA

------ln φ( ) + 
1 φ–
NB

------------ ln 1 φ–( ) + χφ 1 φ–( )

F =  Vd∫ f φ r ,t( )( ) + 
κ
4
--- ∇φ( )2

∂φ
∂t
------ + ∇ JA⋅  = 0

JA = −Λ φ( )∇µ

µ r( ) = 
δF

δφ r( )
-------------

ΛA = φΛ0

Ne

NA

------,  ΛB = 1 φ–( )Λ0

Ne

NB

------

Λ φ( ) = 
ΛAΛB

ΛA ΛB–
------------------- = 

φ 1 φ–( )Λ0Ne

NA 1 φ–( )+Rφ{ }
-----------------------------------------

κ φ( ) = 
σA

2

φ
------ + 

σB
2

1 φ–( )
---------------- = 

a
2

φ 1 φ–( )
--------------------

∇µ r ,t( ) = ∇ δF
δφ r ,t( )
----------------- = 

1
NA

------ ∇φ
φ

------- 
   + 

1
NB

------ ∇φ
1 φ–
---------

−2χ∇φ − 
a

2

2
----- ∇3φ

φ 1 φ–( )
--------------------
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In arriving at Eq. (9), we have neglected nonlinear terms
involving ( φ )3 and ( φ ) 2φ . These terms are unimpor-
tant at late stages of interdiffusion when the interface has
sufficiently broadened. Combining Eq. (4) and Eq. (7) with
Eq. (9), the flux JA of species A across a plane fixed with
respect to the initial sharp interface is obtained:

 (10)

where DA (=Λ0 Ne /NA
2) is the self-diffusion coefficient of

highly entangled linear polymer A in melt and K (=NA a2) has
the magnitude of the square of the end-to-end distance in an
unperturbed chain.

Like the interdiffusion taking place between two thin
sheets of polymers A and B, let us consider a one dimen-
sional transport along the x-axis normal to the plane of sheet.
We write our model in dimensionless form via scaling length
and time. The length is scaled by the natural length K½ and
made conversion x → x/K½ and the time is scaled with the
unit τ =2K/DA, which is on the order of the reptation time of
a single chain in a melt, and made the transformation t → t/τ.
Finally the composition variable is redefined as ψ = 2(φ - ½)
so that the order parameter ψ takes values between +1 (pure
A) and −1 (pure B) as composition profile φ drops from 1 to
zero, and we have also made a change of notation: NAχ→χ
where χc = 2 in the critical point of the symmetric case (R =
1). The resulting equation in terms of the rescaled variables
is given by

 (11)

 
The factor in front of  in Eq. (11) describes a diffu-

sion coefficient which represents N−2 dependence in the rep-
tation model. The second term involving accounts
for the presence of an interface separating two incompatible
phases and moderates the structure formation because too
steep gradients are thermodynamically disadvantageous.

Computational Methods

Eq. (11) is a non-linear equation for φ, and solving it gen-
erally requires numerical computation obtained by discretiz-
ing Eq. (11) with finite differences. Let us consider a bilayer
of initially pure polymer A and polymer B where the left-
hand side is occupied by A and the right-hand side by B. The
evolution of the bilayer system starting from the initial pro-
file of a step function is described by application of the stan-
dard Crank-Nicholson method to update at every time step
the profile described by Eq. (11). We discretize 
as (ψi

n+1-ψi
n)/∆t,  as (ψi+1

n-ψi−1
n)/2∆x, and simi-

larly for its higher spatial derivatives with ∆t = 0.01 and ∆x =
0.5. The total grid points are 700, so that the total thickness

is 350 K½. We take the initial interface of the bilayer syste
as 350∆x (=175 K½). The boundary conditions to solve th
above diffusion equation are = 0 and

 = 0 at the outer two ends of the bilayer. The
the system is allowed to evolve 105 time steps (= 103τ) with
an initial interfacial width of a reasonable magnitude as lo
as the boundary condition will remain valid.

A quantitative measure for the interfacial broadening
the interfacial width W(t) defined as the inverse of the slop
at the point of the interface where the composition prof
ψ(x) varies most rapidly:

(12)

where W(t) is given in units of K½. We take W(0) consider-
ably smaller than W(�) to start the interdiffusion process o
the computer. The mass transport M(t) of polymer A trans-
ported from the left-hand side of the initial dividing surfac
to its right-hand side is calculated as

 (13)

where C is a proportionality constants. The mass transp
depicts the overall profile of the composition field while th
interfacial width reflects the local structure at the interface
is expected that M(t) will increase with time slower than t½

for the partially miscible couples of polymer blends becau
of the suppressed diffusion due to the “spinodal barrier”.

We have considered three values of χ = 1.6, 1.7, 1.8, and
four values of R = 1, 1.5, 2.0, 3.0. In the Flory-Huggins
mean field model of polymer mixing, χc is given by

 

 (14)

where χc is the value of χ at the critical temperature Tc. After
we have made a change of notation NAχc→χc and NB/NA→R,
the following expression for the Eq. (14) is obtained:

 (15)

In Eq. (15), χc = 2 for the symmetric case (R = 1) and χc =
1.65, 1.46, 1.24 for R = 1.5, 2.0, 3.0, respectively.

Results and Discussion

Figure 1 shows the composition profiles of polymer A for
A/B diffusion couples which were diffused at χ = 1.6 for dif-
fusion times, t, of 62, 250, 562, and 1000τ in R = 2. This fig-
ure shows that the composition profiles remain asymme
as interdiffusion proceeds and the diffusion behaviors dif
significantly from those for the symmetrical case.13 All the
composition profile curves appear to intersect at a sin
point at the original interface. This means that the numbe
chains per unit area crossing the original interface instan
neously reaches a constant value after a short repta
time.26 As we see in Figure 1, the lower molecular weig

∇ ∇ ∇

JA = − 
φ 1 φ–( )Λ0Ne

NA 1 φ–( )+Rφ{ }
-----------------------------------------∇µ

∂ψ
∂t
------- = 

∂
∂x
----- 2

1 R R 1–( )ψ+ +
----------------------------------------- 

 

1 + 
1
R
--- − χ + 

1
R
--- − 1 

  ψ + χψ2〈 〉 ∂ψ
∂x
------- − 

∂3ψ
∂x

3
---------

 
 
 













∂ψ/∂x

∂3ψ ∂⁄ x
3

∂ψ x,t( )/∂t
∂ψ x,t( )/∂x

∂ψ x,t( )/∂x
∂3ψ x,t( )/∂x

3

W t( ) = 
∂ψ x,t( )

∂x
------------------- 

 
max

2–

 − 
∂ψ x=350∆x,t=0( )

∂x
---------------------------------------------- 

 
2– 1/2

M t( ) = C xd
350∆x

700∆x

∫ 1 ψ x,t( )+[ ]

χc = 
NA NB+( )

2

2NANB

-----------------------------------

χc = 
1 R+( )

2

2R
------------------------
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chains A diffuse more deeply into the high molecular weight
B than the high molecular weight chains B diffuse into the
low molecular weight side of the diffusion couple because of
the entanglement effects. Therefore, Figure 1 demonstrates
that the composition profiles do not vary smoothly with
depth. It decreases rapidly with depth from pure A to a value
around ψ�−0.5 but then much more slowly with depth as ψ
decreases further. These behaviors are very similar to the
experimental results of Figure 7 in ref 6 and Figure 4 in ref
25. The development of the interfacial width W(t) for R = 2
at different values of χ (=1.6, 1.7, and 1.8) is monitored
against the square root of the time and shown in Figure 2.
Because binary polymer mixtures are characterized by an
upper critical solution temperature, χ = 1.6, 1.7, and 1.8 are
away from the critical point (χc = 1.46) toward one-phase
region. Therefore, as the simulations of interdiffusion are
carried out further away from the critical temperature which
corresponds to χc = 1.46 for R = 2, the transport behaviors
seems to be more non-Fickian. The exact behaviors will be
characterized in detail at the following figures. We see
clearly how the interfacial width increases at short time but
then levels off to its limiting value in Figure 2. A more
detailed examination of the time variation indicates that, fol-
lowing an initial rapid increase, W(t) varies as a power of t
markedly slower than t½, until it eventually levels out at its
limiting value at sufficiently long times. These observations

emphasize the complexity of the interfacial developme
kinetics at χ > χc, and are in good agreement with the expe
imentally observed behaviors.4,5 These can be more clearly
investigated in greater detail by searching for the power-l
relation: W(t) � tα. Figure 3 shows the development wit
time of W(t) for R = 2 at three different values of χ, on a dou-
ble-natural-logarithmic plot. We can see the power-law-li
increase of W(t) at short times, and leveling off to a consta
value of W(t) at long times. The initial variation of the inter
facial width with time for t�4.48τ (log [t]�1.5) is well rep-
resented by the power-law relation. This power variation
significantly different from the free-diffusion  relation
The solid lines in Figure 3 are the linear fits which yield t
exponents α for the time development. The values of α are
0.3436, 0.2936 and 0.2612 for χ = 1.6, 1.7 and 1.8, respec
tively. We note that α is in all three cases significantly
smaller than the exponent 0.5 for free interdiffusion. Furth
away from the critical point given by χc = 1.46, the larger χ
value, the faster W(t) saturates and the smaller α in Figure 3.
These results are in good agreement with a mean-f
approach12 that, closer to the critical temperature, the exp

t

Figure 1. Time evolution of the composition profiles for χ = 1.6
and R = 2 at five different times. χc = 1.46 for R = 2. The time is
expressed in units of τ (=2K/DA) and length in units of 0.5 K1/2.

Figure 2. Interfacial width W(t) against the square root of time for
χ = 1.6, 1.7, and 1.8 in R = 2. The units are the same as in Figure 1.

Figure 3. Natural log-log plots of the variation with time of the
interfacial width for χ = 1.6, 1.7, and 1.8 in R = 2. The solid lines
are the linear fits that yield α.

Figure 4. Natural log-log plots of the mass M(t) transported
across the initial dividing surface for R = 2. The solid lines are the
linear fits that yield β for t�4.48τ (log[t] �1.5) and the details are
given by inset. The dotted lines are the linear fits that yield β for
4.48τ � t � 1000τ ( 1.5� log[t] � 6.91)
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an experiment.5 Figure 4 shows the mass M(t) transported
across the initial dividing surface with time for R = 2 at three
different values of χ, on a double-natural-logarithmic plot.
The solid lines in Figure 4 are the linear fits that yield the β
for t�4.48τ (log[t] �1.5) and the details are shown in inset
to Figure 4. The dotted lines are the linear fits that yield β for
4.48τ�t�1000τ (1.5�log[t]�6.91). The values of β in the
solid lines are 0.3918, 0.3809 and 0.3701 for χ = 1.6, 1.7,
1.8, respectively and 0.4827, 0.4816, 0.4808 in the dotted
lines for the same each χ value. Still, the values of β stay
within 0.25 and 0.5 but the values of β are greater than those
of α. When we contrast two different quantities W(t) and
M(t) that describe the same transport process, on the con-
trary, the mass transport M(t) continues to increase with time
without leveling off to its limiting value as shown in Figure
4. These contrasts of two quantities prove that the behaviors
related to interfacial dynamics are significantly different
from those concerned with mass transport. With more quan-
titative analysis by comparing α with β during the same ini-
tial period at three different values of χ, both values of α and
β stay within 0.25 and 0.5. But, α decreases more steeply
than β and the difference of two values increases, as χ grows
larger. This explains that the exponent α is more sensitive to
local structure of the interface and to the value of χ (=tem-
perature) than the exponent β. Summing up, these come to
the following result. The interfacial width W(t) well charac-
terizes the initial process of interdiffusion while the mass
transport M(t) well characterize the entire transport process
and interdifussion in the late stage. From now, we will inves-
tigate the interdiffusion at the constant χ value (=tempera-
ture), varing the molecular weight ratio of the diffusion
couple. The composition profiles of lower molecuar weight
polymers A diffusing into higher molecular weight polymers
B computed numerically for several molecular weight ratios
of B to A at t = 1000τ and χ = 1.7, are shown in Figure 5.
The molecular weight ratio R (=NB/NA) is 1, 1.5, 2, and 3. As
R becomes more than 1, the curves approach an asymptotic
shape which is quite different from that obtained when R = 1
(NA=NB). As the length of polymer A is shorter than that of
polymer B, the polymer A diffuse more deeply into the poly-
mer B rich phase because of the chain entanglement in Fig-

ure 5. These shapes are similar to the simulated result
Figure 2 in ref 24. The development of W(t) with time
between coexisting homopolymer A-homopolymer B bilay-
ers for χ = 1.7 at different molecular weight ratios (R= 1.5,
2, and 3) is monitored and shown in Figure 6. The natu
log-log plots of variation with time of the interfacial width a
χ = 1.7 for different values of R, are presented in Figure 7
The solid lines in Figure 7 are the linear fits that yield α for
the initial period of time. The value of α is 0.3708, 0.2935
and 0.2638 for R =1.5, 2 and 3 respectively. The mass tran
port M(t) across the initial dividing surface for χ = 1.7 is
shown in Figure 8. The solid lines are also the linear fits t
yield the β for t � 4.48τ (log[t] � 1.5) and the details are
given by inset to Figure 8. The dotted lines are the linear 
that yield β for 4.48τ� t �1000τ (1.5� log[t] �6.91). As
expected, all the values of α and β are also between ¼ and ½
in Figure 7 and 8. As the value of R is larger than 1, diffusion
behaviors are more non-Fickian and values of α and β are
less than ½ of free-diffusion. However, β is less influenced
by the molecular weight ratio R than α. Comparing Figure 7
with Figure 3, we are able to conclude that the interfac
width W(t) is most sensitive to the local structure of th
interface and much more affected by both the χ (=tempera-
ture) and the molecular weight ratio R, while the mass trans-
port M(t) is most insensitive to the local structure and mu

Figure 5. The composition profiles computed for NB /NA = 1, 1.5,
2, and 3 at t = 1000τ and χ = 1.7. The units are the same as in
Figure 1.

Figure 6. Interfacial width W(t) against the square root of time fo
R = 1.5, 2 and 3 in χ = 1.7. The units are the same as in Figure 1

Figure 7. Natural log-log plots of variation with time of the
interfacial width for χ = 1.7. The solid lines are the linear fits tha
yield α.
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less influenced by both χ and R. Furthermore, the interfacial
width W(t) can be used only in the early stage of the interdif-
fusion as a monitor of the interdiffusion process, while the
mass transport M(t) provides a characterization of the entire
interdiffusion process including the late stage, in the asym-
metric case (R� 1) as well as in symmetric case13 (R = 1). In
Figure 7 and 8, the values of α and β for R =1.5 are 0.3708
and 0.3952 respectively and they are relatively close to 0.5
(free diffusion) because χ = 1.7 is near the critical point for
complete mixing (χc = 1.65 for R = 1.5). 

Conclusion

We have demonstrated that our model describes well the
diffusion behaviors not only for different molecular weight
ratio R at constant χ (=temperature) but also for different
values of χ at fixed molecular weight ratio R ( � 1), and our
predictions agree well with available experimental data.
Adopting the molecular weight ratio R (=NB /NA) and entan-
glement effect of mutual mobility into the symmetric Rouse
model in ref 13, we can get the asymmetric diffusion behav-
iors of polymer mixture and obtain the dynamic effects of
the molecular weight ratio R and the temperature (=χ) on the
interdiffusion through the interfacial width W(t) and the
mass transport M(t). Therefore, we are able to study more
exact behaviors of interdiffusion and more reliable compari-
son with experiments between two partially miscible poly-
mer species with different molecular weights from a
theoretical viewpoint. This model gives better description
and agreement than the previous Rouse model13 with same
molecular weights in order to compare their model with

experiments of entangled binary polymer mixtures with dif-
ferent molecular weights. In conclusion, our model can 
well applied to the highly entangled binary polymer mi
tures of deuterated and protonated species of the iden
chemical structure with different molecular weights.
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Figure 8. Natural log-log plots of the mass M(t) transported
across the initial dividing surface for R = 1.5, 2.0 and 3.0 in χ = 1.7.
The solid lines are the linear fits that yield β for t�4.48τ ( log[t]�
1.5) and the details are given by inset. The dotted lines are the
linear fits that yield β for 4.48τ� t � 1000τ (1.5� log[t] � 6.91).


