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It has been proved by the semi-classical gauge invariant formulation (GIF) that the correct interaction operator
for coupling the field-free material states with the radiation field must beagigon formregardless of the

gauge chosen for expressing the electromagnetic potentials, in accordance with the well-established principle
of gauge invariance. The semi-classical GIF is now extended to the quantized radiation field interacting with
matter by defining thenergy operatofor the quantized radiation field in the presence of matter. It will be
shown in this paper that the use of the energy operator guarantpesitiom formof the interaction operator

even in the Coulomb gauge, contrary to the conventional approach in which the dark material Hamiltonian is
used to get the interaction operator ofrti@mentum formThe multipolar Hamiltonian is examined in the con-

text of the quantum mechanical gauge transformation.

Introduction states, {{p¥>}, of the field-free (dark) material Hamiltonian,
H\?, for expressing the material statéj[t)>, in the pres-
The interaction of the radiation field with the matter pro-ence of the radiation field. Since the phase $fi({)>
vides important spectroscopic tools for probing the quantunthanges with a gauge transformation, the expansion coeffi-
mechanical structure of the matter. Theoretically, the interaceients of $u(t)> in terms of the (gauge independent) dark
tion is described by an interaction operator for coupling theeigenstates, {§¥>}, inevitably become gauge dependent.
guantum mechanical material states with the radiation fieldThe problem becomes more serious when the perturbation
Within the electric-dipole approximation (EDA), many dif- technique is used for finding the expression for the transition
ferent forms of the interaction operator have been proposeprobability.
for various reasons Among those operators, th®sition In order to overcome the difficulty, ttenergy operatofor
form, E(t) - r, and themomentum formA(t) - p, are the best matter in the presence of the radiatidfe, was introduced
known forms of such interaction operators. The latter isin the semi-classical gauge invariant formulation (GIF) pro-
often regarded as the more fundamental form since iposed by Yang and othe¥$.Within the EDA, Hue is
appears to be resulted from more rigorous derivatiordefined by a unitary transformation idf} and it represents
employing fully quantized radiation field. The former is the instantaneous energy of the matter in the presence of the
regarded as an approximation which is more practical irradiation field. Now, unlike the dark eigenstates, the phase
many calculations for various reasons. of the eigenstates ¢tve, { W (t)>}, also depends on the
In early 1950's, however, it was pointed out by Lamb thathoice of the gauge by the same fashionY4gt]>, thus
the different forms of the interaction operator are in factmaking the expansion coefficients &kj(t)> in terms of
related to the choice of gauge condition for the electromagf| /¥ (t)>} gauge invariant. It can also be shown that the rate
netic potentials to express the radiation ffelt.was sug-  of change oHve becomes thpowerin accordance with the
gested that the position and momentum forms of theclassical Poynting's theorénilThe semi-classical GIF sim-
interaction operator correspond to themb gaugeand the  ply asserts the fact that the material energy eigenstates must
Coulomb gaugerespectively. Since the electromagnetic acquire the phase factor, in the presence of the radiation
potentials in different gauges are related through a gaugkeld, which depends on the gauge chosen to express the
transformation, these interaction operators must be equivaadiation field.
lent according tahe principle of gauge invarianéeNever- According to the semi-classical GiRge interaction oper-
theless, the controversy over the correct form of theator always takes on the position form at the EDA regardless
interaction operator has been raised repeatedly. The appareftthe gauge chosen for the radiation fielthe transition
inequivalency among the different forms of the interactionamplitudes defined in this fashion do not indeed depend on
operator has been pointed out in connection with the spectréihe gauge as they must be as a physically meaningful quan-
line-shape and the transition probability involving nonlineartity according to the principle of gauge invariance. Although
interactions, non-local potentials, spin-forbidden transitionsthe semi-classical GIF results in the interaction operator
and many others. which is incidentally identical to the form obtained from the
The controversy was finally resolved, at least within theconventional formulation with the Lamb gauge, it is impor-
semi-classical formulation, by thguge-invariant formula-  tant to emphasize thtite GIF does not prefer any particular
tion (GIF) proposed by Yanylt was pointed out that the gaugefor the radiation field.
apparent difficulty arises from the use of the dark eigen- Although the semi-classical GIF has been successful in
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resolving the controversy over the form of the interaction Semi-Classical Gauge Invariant Formulation
operator, the radiation field, in addition to the material part,
must also be quantized in order to develop the more rigorous The semi-classical gauge invariant formulation proposed
description of the interaction between the radiation field andirst by Yand is briefly summarized in this Section. The
matter’ Such a fully quantized description becomes crucialmore details can be found elsewh&te.
for various nonlinear parametric processes including har- In the semi-classical theory, the time-evolution of the
monic generations and wave mixings. Spontaneous emissianaterial system in the presence of the radiation field is
step in these nonlinear parametric processes is conspicdescribed by the time-dependent Schrédinger equation,
ously guantum mechanical in its natére. 2|W, (>
In this paper, the semi-classical GIF is extended to the in——tr
fully quantized description of the interaction of the radiation ot
field with the matter. The full Hamiltonian for the matter and whereHy(r, t) is the minimally coupled Hamiltonian for the
the radiation will be examined in detail. Especially, it will be matter in the presence of the radiation field,
emphasized that the radiation part of the Hamiltonian must 1 2
be expressed in terms of thisplacement vectpD(t), HM(r,t):Z—[p - gA(r,t)} +V(r)+qA,(r.t) (2
instead of the field strengthE(t), in order to take into m ¢
account the effect of the polarization in the matter in theHere,A(r,t) andA.(r,t) are respectively the vector and scalar
presence of the radiation fieldThen, it will be shown that potentials for the radiation field, andr) is the static Cou-
the energy operator for the radiation in the presence of thdomb potential. In this equation, the matter is denoted as a
matter Heg, can also be defined through a unitary transfor-system of a single charged particle with chargad mass m
mation of the free field Hamiltonian as in the semi-classicafor the sake of notational simplicity.
GIF. The use oHgg, together wittHye for the matter, auto- According to the principle of gauge invariance, the elec-
matically guarantees the physically meaningful gaugeromagnetic radiation must be invariant under the following
invariant transition amplitudes for the combined system ofgauge transformation on the electromagnetic potentials,
the matter and the radiation field. A(r,t) andAq(r,t),
However, it has to be pointed out that in the fully quan- e
tized description arbitrary gauge transformation is not possi- AD=ArO+AArD (32)
ble since the quantization rule for the radiation field is A D)=A. (1) - 1 JA(r) (3b)
uniquely determined by the gauge condition chdsEmere- oV e ot
fore, the radiation field expressed in the Coulomb gauge will . : , .
. . ) . ) o hereA(r, t) is an arbitrary gauge transformation function
be extensively examined in this paper since it is the mos\f/ . . . X
. . rom the (unprimed) original to the (primed) new potentials,
convenient gauge for quantization. Contrary to the conven: . . .
. N : . {A(r, 1), A (r, t)}. In other words, the principle of gauge
tional result, it will be shown that the interaction operator arinvariance requires that all phvsically meaninaful proberties
the EDA still takes on thposition form E(t) - r, rather than q L all pnysically gtul prop
.. . must be equally described by either set of the electromag-
the momentum formA(t) - p, even though the radiation is ; ) , .
. netic potentials, A(r, t), As(r, t)} or {A'(r, 1), Ao (r, t)}.
expressed in the Coulomb gauge. . . .y
. . o . In quantum mechanics, the time-dependent Schrédinger
Finally, the multipolar Hamiltonian formulation proposed equation in Eq. (1) iform invariantunder any gauge trans-
by Poweret alt® will be discussed briefly in the context of d 9 Y gaug

: : . formation, since the Hamiltoniardw(r,t), and the wave
the gauge transformation. The multipolar Hamiltontdgp, : .
. . . function, Hu(t)>, are transformed respectively as follow-
was obtained through a unitary transformation of the freeing 1

field Hamiltonian quantized in the Coulomb gaudup

=Hu (D] Yu(t)> 1)

contains the interaction terms directly expressed as a multi- N tn0U)
pole series which is evidently gauge invariant. For this rea- Hy' (n)=UHy(r,HuT+ih ot v (4a)
son, it was suggested that the multipolar partHgfp W, (1)>= U| Wy, (1)> (4b)

corresponds to the gauge invariant interaction operator to be
used for defining the physically meaningful transition ampli- where
tudes. It will be shown, however, in this paper that the uni- .
tary transformation leading tdye does not correspond to a U= exp[ﬂ/\(r,t)J (4c)
. . . " ch

gauge transformation and that the so-called "multipolar
gauge is not acceptable as a gauge condition for representiftgere, Hy'(r, t) and ' (1)> are the minimally coupled
the electromagnetic radiation. Hamiltonian and the wave function expressed in the new

The semi-classical GIF is briefly reviewed in Section Il. (primed) gauge, respectively. It is noted here that the mini-
The field energy operatoHg, is defined and examined in mally coupled Hamiltonian in the new (primed) gauge is not
Section Ill. In Section IV, the interaction operator, when thegiven as a simple unitary transformationHfi(r, t) in the
radiation field is expressed in the Coulomb gauge, is derivedld (unprimed) gauge. Instead, there appears the additional
from the fully quantized GIF. Discussion on the multipolar term involving the time derivative of the transformation
Hamiltonian is given in Section V. function, which guarantees the form invariance of the
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Schrddinger equation. It is thus important to emphasize the 1

fact thatthe expectation value of the minimally coupled P(t):é[v(t) COE(r,t)+gE(r,t) Ov(t)] (12)

Hamiltonian which contains a time-dependent potential is

not invariant under a gauge transformatiorhe minimally ~ Here,w(t) = p —(g/c) A (r,t) is the velocity operator. Then,

coupled Hamiltonian controls the time-evolution of the Eq. (10) corresponds to tktassical Poynting's theorgrby

material system interacting with the radiation through thewhich the rate of energy change is given by the power of the

form-invariant time-dependent Schrodinger equation giversystem, ifHwe(r,t) is regarded as trenergy operatorepre-

by Eq. (1). senting theinstantaneous energy of the material system in
The controversy over the form of the interaction operatoithe presence of the radiation fielurthermoreHwe(r,t) is

arises from the phase factor of the wave function which igeduced to the field-free dark Hamiltonid§) (rt), in the

changed with a gauge transformation as shown in Eqg. (4babsence of the fieldi(r,t) = 0. Now, the gauge invariant

Unlike [#u(t)>, the eigenfunctions, §¥>}, of the field-free  expansion coefficients af{ (t)}, defined in this fashion can

dark Hamiltonian,Hg (r, t), are entirely independent of the be regarded as thiansition probability amplitudes between

choice of the gauge since there is no radiation field involvedhe energy eigenstates of the mategardless of a gauge

in Hw(r,t). Therefore, the expansion coefficients of the chosen for the radiation field.

gauge dependentHi(t)> in terms of the gauge independent  Furthermore, at the EDA, it can be shown that the energy

{| ¢¥>} inevitably depend on the gauge chosen & (})>. operator in Eqg. (5) is expressed as a unitary transformation

It is for this reason that the expansion coefficients defined irof Hyg(r, t),

the conventional formulation cannot be accepted as physi-

cally meaningfultransition probability amplitudesvhich

must be invariant under any gauge transformation. and that an eigenstate of the energy operator is related to the
In the semi-classical gauge invariant formulation (GIF),corresponding dark eigenstate according to

Hye(r)=U; Hy U,f (12a)

the following basis defining operattye(r, t), is employed EnM: snM (12b)
HME(r!t):HM(r!t) - qA)(r!t) M M
TRV |¢n (1>= Uy (016> (12c)

= En[p - CA(r,t)} +V(r)+aA.(r.) ®) Wwhereepis the eigenvalue of the dark Hamiltonian. Here,
The two operatorsive(r, t) in the old (unprimed) gauge and U= exp['c—%r DA(t)J (12d)
Hwe in the new (primed) gauge, are related by a simple uni-
tary transformation, Now, the equation of motion foa{ ()} at the EDA can be

Hye'=U Hy Ut (©6) written as
M
And, the eigenfunctiongf¥ (t)>, of Hwe(r, t) satisfying the L dag(t) mom M M M
following equation, ih ot G O+ Z (<l - ar EE(t)|cpm>(13)
e D1 ¢y (O>=E L ©1¢y (0> (7)

The interaction operator is clearly in the position form. It
is related to the eigenfunctiog” (t)> of Hwe'(r, t) by the  is emphasized that Eq. (13) is valid no matter which gauge is
following relation, chosen to expressed the radiation field.
M _ M According to the semi-classical GIF briefly summarized in
W (0>= U], (1)> (8) this Section, the interaction operator for coupling the field-
Here, it can be readily seen that upon a gauge transformatidree dark eigenstates always takes on the position form
[wM(t)> acquires the same additional phase factor asegardless of the choice of the gauge for the radiation field.
|¥u()> as shown in Eg. (4b). NowW}, (t)> can be The position form obtained in this approach happens to coin-
expressed in terms of ¥ (t)>}, instead of the eigenstates cide with the interaction operator obtained from the conven-
of the field-free dark Hamiltonian, fJ¥ (t)>}, as following tional formulation with the radiation field expressed in the
_ M M Lamb gauge in whicl\(t) = 0 andAq(t) = —gr - E(t) at the
[P (t)>= Z 2, (D)1 ¢n (1)> ) EDA. In the semi-classical GIF, howevan gauge condi-
The gauge invariance of the expansion coefficieat$()}, tion is assumed at adit the beginning and Eqg. (13)valid
is evident since bothHy (t)> and |pY (t)> carry the same for any gauge chosen
phase factor, as shown in Egs. (4b) and (8), upon a gauge
transformation. Furthermore, the following relation can be Energy Operator for the Radiation Field
readily derived,
d In this Section, the Hamiltonian for the free radiation field
d_t< Y (OHuer )] Py t)>=< Yy, (1)|P(1)]| Pu(t)> in the at.)sen.ce of the matter_ is examined first and then the
(10) full Hamiltonian for the combined system of the matter and
whereP(t) is the power operator given as the radiation field is briefly discussed. Téxeergy operator
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for the field in the presence of the matigrdefined at the tion and the magnetization arising from the polarizable mat-

EDA. ter in the presence of the external radiation field.
Free Radiation Field The Hamiltonian for the radia- Now the Hamiltonian for the field in the presence of the
tion field in the absence of the matter is giveh by polarizable matter becontes
HR(O=SUEOP+HOP (149 He)=3=f (EC.0 DEY+HEY BEOIAY  (20)

When the Coulomb gaugél( A =0 andA,=0) is chosen, and the full Hamiltonian for the matter and the radiation
the vector potential\(r, t) can be written in the quantized field is given as
form, ke H=Hy (r)+He(r D) (21)
Alr)=Ne{ae } (15) whereHy(r,t) is the minimally coupled Hamiltonian, given
wherea anda' are thecreationandannihilation operators of  in Eq. (2), for the matter in the presence of the radiation
the radiation field, respectively, satisfying the commutationfield. The use ob(r,t) andB(r,t) for the energy of the radia-
relation, tion field in the presence of the polarizable matter is well
[a af=1 (16) established in classical theory on electromagnetism. In the
guantum mechanical description of light-matter interaction,
In Eq. (15), €, k andw are the polarization unit vector, the however, the polarization effect is often neglecteH(r,t)
wave vector, and the frequency of the radiation respectivelyprobably due to the fact thB(r,t) andB(r,t) are not easy to
and N =[hc/ 2wV]¥?is the normalization constant. Here, express in closed quantized forms. Instéédr.t) is often
the radiation field is treated as completely monochromatiaeplaced by the Hamiltonian for the free fiek?, in Eq.
for the sake of notational simplicity. For the polychromatic (18). Then the interaction appears only in the material part of
radiation field, the vector potential in Eq. (15) must containthe HamiltonianHm(r.t).
all the frequency and polarization components. With the vec- At the EDA, the electric polarization can be written as fol-
tor potential given in Eq. (15K(r,t) andB(r,t) in Eq. (14) lowing,
are given as following,

-i(k O+ wt
+afe Ty

P(rt)=qgr E(t) (22)
E(rt)= Mé{ ae®T-ev —aTe_i(k Ermt)} (17a) and the magnetization can often be ignored. Therefore,
¢ _ ket He(r,t) in Eq. (20) can be written as
3(r1)=iN (k x 8){ae T~ V-ate “TTN (17p)
_ 40
Then, the free-field Hamiltonian in Eq. (14) can be expressed He(r)=He+qr IE(D) (23)
in the quantized form, at the EDA.
1 Energy Operator at the Electric Dipole Approximation.
H‘;: hw% ar+ EE (18) In the semiclassical GIF, the energy operdtlg, for the

matter in the presence of the radiation field is given as the

Again, the right-hand side of the Eq. (18) must contain theunitary transformation of the dark HamiltoniaHl,, as
summation over all the frequency and polarization composhown in Eq. (12a). It will be now shown that the energy
nents in the polychromatic radiation field. The Hamiltonian operatorHeg, for the field in the presence of the matter can
in the quantized form in Eq. (18) is unique for the Coulombbe defined through the same unitary transformation of the
gauge. It is not possible to obtain the Hamiltonian quantizedree-field HamiltonianH, in Eq. (18).
in any other gauge by direct transformation of the above When two quantum mechanical operatQrandS do not
Hamiltonian expressed in the Coulomb gauge since theommute with each other, it can be readily shown that the
guantization rule is completely different for every gaugeunitary transformation d with U; = expjS] becomes
condition chosen.

Full Hamiltonian for the Matter and the Radiation. The U,QU,"™=Q+[i S, Q]+ %[iS,[iS, Qll
matter consisted of charged particles is polarized in the pres- 1 '
ence of the radiation field. Along with the external radiation + g[iS,[iS, [iS, QIIl+ - (24)

field, the resulting polarization of the matter also becomes a

source of the field acting on the charged patrticles in the mawWwhenU; = exp[{g/ch)r - A(t)] (i.e. S = (g/ch)r - A(t)), which

ter. The overall field can be expressed in terms ofdike  corresponds to the transformation function in Eq. (12d) at
placement vector(or electric inductiop, D(r,t), and the the EDA, the commutation relation in Eq. (16) can be used

magnetic inductionB(r,t)° to derive the following relations,
D(rt)=E(r,t))+4mP(r,t 19a . i
(D= (r.0+4mP(ry (192) [is. pl = 4 A() (250)
B(r,t)=H(r t)+4nmnM(r 1) (19b) i o
. - _ i
whereP(r,t) andM(r,t) are respectively the electric polariza- [iS, a] = ch (rle)e (25b)
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. | -i ot 2

[iS, a'l=gp (r B)e (25¢) H:HM+HF:HME+HFE—%%)EU B)?  (28)
Since [S, [ [S a]ll = [iS, [ IS, a]]=0and |S, [ i

[iS, plll = O. Hwm, He, Hue andHee are given by Egs. (2), (24), (5), (26),
Thus, it can be readily confirmed that the relation in Eq.respectively. The last term in the above equation is added in

(12a) is still valid when the vector potential lo; is order to cancel out the extra term appeared in the unitary

expressed in the quantized form in Eq. (15). This means thatansformation oH 5in Eq. (26).

the energy operator for the matter in the presence of the radi-The time evolution of the combined system is described

ation field as defined by Eq. (5) is related to the field-freeby the time-dependent Schroédinger equation,

dark material Hamiltonian by the unitary transformation in

Eqg. (12a) even if the radiation field is quantized in the Cou- ihilﬂd}k:m W(t)> (29)

lomb gauge. Thus, the eigenstates of the energy operator

retains the same phase factor as in the semi-classicalhere ¥(t)> represents the quantum mechanical state of the

approach. combined system. It is now possible to expréds)* in
Now, it is interesting to find the unitary transformation of terms of the direct product of the eigenstatesigf and

H Pwith U, which may be regarded as #heergy operatgr  Hee. That s,

Heg, for theradiation field in the presence of the matier

analogy with the energy operatonydl for the matter in the | P(t)>= an a, m(t)|(,llnM(t)>| l,l/;(t)> (30)

presence of the radiation field given by Eq. (5). By writing »

Usata Ut = (Usa UsT) (UsaUs") along with Egs. (25a) and where the indices andm represents the eigenstates of the

(25h), one can easily obtain the following result, matter and the radiation field, respectively. Then, the equa-
tion of motion for fn (1)} is given by
Hee=U,HU T=H2+qr CE(t)+ %Z—Q’E(r ) )| 9a, wlt)_, m, F
FE 1MEY1 F DCZhD ihT: (gn + Sm)an, m(t)
Here, Eq. (17a) has been usedE) at the electric dipole
approximation. + Z ; ay, m(1)
Now, the following relations can be readily verified,
2
F F MmoFl 8 Wdd s Fow
E.=¢&, (27a) <¢n wm||: Ihdt Epzhg(r Ce) :||wmwn>
31
Wh0>= U] > (27b) (31)

As explained above, the eigenstatedHat andHge are
where {1} and {|g [ (t)>} are the eigenvalues and eigen- related to the eigenstatesHt¥f' and H5 by the same unitary
functions ofHre while {¢F} and {|g} >} are the eigenvalues transformation wittJ; given by Eq. (12d). Thus, the above
and eigenfucntions dfl §, the Hamiltonian for the free field equation can be rewritten as following,
in the absence of the matter. The above relations are reminis- da, (t)
cent of the relations for the material energy operator in the ihné—m: (snM + s;)any m(t)
presence of the radiation field as given in Egs. (12b) and t
(12c). That is, the eigenvaluestafz andH §are the same,
but the eigenfunctions differ by a phase factor. Thus, in view + Z ; ay m(t)
of the successful role ¢iye as the basis defining Hamilto-
nian for achieving the gauge invariant transition probability M F 9 %Z_Qg . -
amplitude in the semi-classical approach, one can expect the < ¢y wm|U1|:_|h5t ~ Do drie) }Ufl‘l/m‘ﬂn > (32)
similar role ofHge in the fully quantized description of the 0=

radiation field interacting with the matter. Since
Interaction Operator Ulo%ul’f: —iT—%[iS, iT] (33)
1. o
It is now possible to derive the interaction operator for —§[|S, [iS, iT]] =

coupling the quantized radiation field with the quantum

mechanical matter states by usiHge in Eq. (26) as the _0S . :
basis defining Hamiltonian. whereT= o andS=(ig/ch)r [A(t), itcan be proven that
The total Hamiltonian for the combined system of the mat- 3 2.0 .
ter and the radiation field expressed in the Coulomb gauge at ihUla—tUlT:qr (E(t) - %[{r Eé)2 (34)
oo

the EDA can be written as following,
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So, Eg. (32) becomes the time-dependent transformation function.
da. (1) The other difficulty with the multipolar gauge is that the
ih%é—T:(gnM+ g;)an () vector and scalar potentials implied frofye does not

really corresponds to the acceptable legitimate gauge condi-

M F F M. (35 tion. According to Poweet al,'° the multipolar gauge is
+ Z Z an, m(1)< @y @l —ar CE(1)| @ > (39) identified byA(r,t) = 0 andgA, being expressed by the mul-
in which the interaction operator is clearly thesitionform,  tipole series. The vanishing vector potential impBést) =
not the momentum forneven though the Coulomb gauge [XA(rt) = 0 for the radiation field, which is clearly not
has been employeflom the very beginning. Although the acceptable as realistic description of the radiation field
position form of the interaction operator is not at all conspic-beyond the EDA. It is a quite different matter for the Lamb
uous at the Hamiltonian level given in Eq. (28), the positiondauge mentioned above in whigfr t) is also null, since the
form of the interaction operator is nevertheless recovered aamb gauge is defined in a limited sense of the EDA.
last mainly from the time derivatives of the time-dependent
phase factors of the energy eigenstates. Concluding Remarks

Multipolar Hamiltonian The gquantum mechanical description of the interaction of
radiation field with matter is examined from the point of
In late 1970's, Powest al proposed the so-called the mul- View of the gauge invariance. The full Hamiltonian for the

tipolar Hamiltonian,Hws in which the interaction operators combined system of the radiation field with the matter has
of the form of the classical mu|tipo|a|' series are C|ear|ybeen C|OSG|y examined with the quantized radiation field. It
exposed at the Hamiltonian levéf2 They suggested that IS pointed out that in the presence of the matter consisted of
the multipolar Hamiltonian corresponds to the minimally charged particles the displacement vector which includes the
coupled Hamiltonian expressed in the "multipolar gauge" aolarization effect due to the charged particles must be used.
they called it. They obtained the multipolar gauge by the fol-The resulting Hamiltonian expressed in the Coulomb gauge
lowing unitary transformation of the minimally coupled at the electric dipole approximation (EDA) is presented.

Hamiltonian given in Eq. (2), Then, the basis defining energy operator for the radiation
_ . field in the presence of the matter is defined by the unitary

Hyp(r)=U Hy(r,Hu transformation of the free field Hamiltonian, analogous to
=H,—p LE(t)-M(r) [B(r) (36) the energy operator for matter in the presence of radiation
with field. The use of such gauge-dependent basis defining
] function guarantees the gauge invariance of the time-evolu-

U= exp['c—?:]r m(r,t)J (37) tion of the combined system of the radiation field in the pres-

ence of the matter as in the semi-classical description. It has

Here, the quantization of the radiation field is expressed ifeen proved that the interaction operator for coupling the
the Coulomb gauge signified by the commutation relationdark eigenstates of the free material eigenstates and of the
given in Eq. (16). They claimed that the unitary transformafree field eigenstates is given by the position form at the
tion in Eq. (36) corresponds to the gauge transformatiofrDA even if the Coulomb gauge is employed for the radia-
from the Coulomb gauge to the so-called multipolar gauge. tion field. In the conventional formulation using the free
There are two serious difficulties in accepting the multipo-material and free field eigenstates, the Coulomb gauge is
lar Hamiltonian as a phys|ca||y meaningfu] operator. First ofbelieved to result in the momentum form of the interaction
all, as clearly indicated in Eq. (37), the transformation func-operator.
tion used to getlwpe from Hy is time-dependent. Because of It has also been shown that the multipolar Hamiltonian
the time-dependent nature of the transformation, the timeProposed by Powest al. has serious theoretical difficulties.
evolution of the wavefunction in the transformed representaSince the transformation of the minimally coupled Hamilto-

tion now have to be given by the following equation, nian in the Coulomb gauge to the multipolar Hamiltonian is
inherently time-dependent due to the vector potential

., O |Pyp(t)> . out involved, an additional term must be added to the time-
'hT:HMP(r't)|WMP(t)> } 'h7t|L'UMP(t)> dependent Schrodinger equation in order to maintain the
validity of the description of the time-evolution of the sys-

The last term does not automatically vanish even at théem. Furthermore, it is also pointed out that the so-called
EDA because the time derivative of the vector potential inmultipolar gauge which is believed to be the gauge condition
the Coulomb gauge must be directly related to the electricorresponding to the multipolar Hamiltonian cannot be
field strength which cannot vanish. Thus, the wavefunctioraccepted as a legitimate gauge condition for the radiation
in the transformed representation does not satisfy the usuéiéld.
time-dependent Schrodinger equation. In other words, it is Acknowledgment This work was supported by the
no longer possible to use the usual time-dependenion Directed Research Fund of the Korea Research Founda-
Schrddinger equation ondgy, is tranformed intdHyp by tion.
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