
720     Bull. Korean Chem. Soc. 1999, Vol. 20, No. 6 Duckhwan Lee
The Gauge Invariant Formulation for the Interaction 
of the Quantized Radiation Field with Matter

Duckhwan Lee

Department of Chemistry, Sogang University, Seoul 121-742, Korea
Received May 25, 1999

It has been proved by the semi-classical gauge invariant formulation (GIF) that the correct interaction operator
for coupling the field-free material states with the radiation field must be the position form regardless of the
gauge chosen for expressing the electromagnetic potentials, in accordance with the well-established principle
of gauge invariance. The semi-classical GIF is now extended to the quantized radiation field interacting with
matter by defining the energy operator for the quantized radiation field in the presence of matter. It will be
shown in this paper that the use of the energy operator guarantees the position form of the interaction operator
even in the Coulomb gauge, contrary to the conventional approach in which the dark material Hamiltonian is
used to get the interaction operator of the momentum form. The multipolar Hamiltonian is examined in the con-
text of the quantum mechanical gauge transformation.
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Introduction

The interaction of the radiation field with the matter pro-
vides important spectroscopic tools for probing the quantum
mechanical structure of the matter. Theoretically, the interac-
tion is described by an interaction operator for coupling the
quantum mechanical material states with the radiation field.
Within the electric-dipole approximation (EDA), many dif-
ferent forms of the interaction operator have been proposed
for various reasons.1 Among those operators, the position
form, E(t) · r, and the momentum form, A(t) · p, are the best
known forms of such interaction operators. The latter is
often regarded as the more fundamental form since it
appears to be resulted from more rigorous derivation
employing fully quantized radiation field. The former is
regarded as an approximation which is more practical in
many calculations for various reasons.

In early 1950's, however, it was pointed out by Lamb that
the different forms of the interaction operator are in fact
related to the choice of gauge condition for the electromag-
netic potentials to express the radiation field.2 It was sug-
gested that the position and momentum forms of the
interaction operator correspond to the Lamb gauge and the
Coulomb gauge, respectively.3 Since the electromagnetic
potentials in different gauges are related through a gauge
transformation, these interaction operators must be equiva-
lent according to the principle of gauge invariance.1 Never-
theless, the controversy over the correct form of the
interaction operator has been raised repeatedly. The apparent
inequivalency among the different forms of the interaction
operator has been pointed out in connection with the spectral
line-shape and the transition probability involving nonlinear
interactions, non-local potentials, spin-forbidden transitions,
and many others.3

The controversy was finally resolved, at least within the
semi-classical formulation, by the gauge-invariant formula-
tion (GIF) proposed by Yang.4 It was pointed out that the
apparent difficulty arises from the use of the dark eigen-

states, {|φ n
M>}, of the field-free (dark) material Hamiltonian

HM
o , for expressing the material state, |ΨM(t)>, in the pres-

ence of the radiation field. Since the phase of |ΨM(t)>
changes with a gauge transformation, the expansion co
cients of |ΨM(t)> in terms of the (gauge independent) da
eigenstates, {|φ n

M>}, inevitably become gauge dependen
The problem becomes more serious when the perturba
technique is used for finding the expression for the transit
probability.

In order to overcome the difficulty, the energy operator for
matter in the presence of the radiation, HME, was introduced
in the semi-classical gauge invariant formulation (GIF) pr
posed by Yang and others.3,4 Within the EDA, HME is
defined by a unitary transformation of HM

o and it represents
the instantaneous energy of the matter in the presence o
radiation field. Now, unlike the dark eigenstates, the pha
of the eigenstates of HME, { |ψn

M (t)>}, also depends on the
choice of the gauge by the same fashion as |ΨM(t)>, thus
making the expansion coefficients of |ΨM(t)> in terms of
{|ψn

M (t)>} gauge invariant. It can also be shown that the ra
of change of HME becomes the power in accordance with the
classical Poynting's theorem.5 The semi-classical GIF sim-
ply asserts the fact that the material energy eigenstates m
acquire the phase factor, in the presence of the radia
field, which depends on the gauge chosen to express
radiation field. 

According to the semi-classical GIF, the interaction oper-
ator always takes on the position form at the EDA regardle
of the gauge chosen for the radiation field. The transition
amplitudes defined in this fashion do not indeed depend
the gauge as they must be as a physically meaningful qu
tity according to the principle of gauge invariance. Althoug
the semi-classical GIF results in the interaction opera
which is incidentally identical to the form obtained from th
conventional formulation with the Lamb gauge, it is impo
tant to emphasize that the GIF does not prefer any particular
gauge for the radiation field.6

Although the semi-classical GIF has been successfu
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resolving the controversy over the form of the interaction
operator, the radiation field, in addition to the material part,
must also be quantized in order to develop the more rigorous
description of the interaction between the radiation field and
matter.7 Such a fully quantized description becomes crucial
for various nonlinear parametric processes including har-
monic generations and wave mixings. Spontaneous emission
step in these nonlinear parametric processes is conspicu-
ously quantum mechanical in its nature.8

In this paper, the semi-classical GIF is extended to the
fully quantized description of the interaction of the radiation
field with the matter. The full Hamiltonian for the matter and
the radiation will be examined in detail. Especially, it will be
emphasized that the radiation part of the Hamiltonian must
be expressed in terms of the displacement vector, D(t),
instead of the field strength, E(t), in order to take into
account the effect of the polarization in the matter in the
presence of the radiation field.5 Then, it will be shown that
the energy operator for the radiation in the presence of the
matter, HFE, can also be defined through a unitary transfor-
mation of the free field Hamiltonian as in the semi-classical
GIF. The use of HFE, together with HME for the matter, auto-
matically guarantees the physically meaningful gauge
invariant transition amplitudes for the combined system of
the matter and the radiation field. 

However, it has to be pointed out that in the fully quan-
tized description arbitrary gauge transformation is not possi-
ble since the quantization rule for the radiation field is
uniquely determined by the gauge condition chosen.9 There-
fore, the radiation field expressed in the Coulomb gauge will
be extensively examined in this paper since it is the most
convenient gauge for quantization. Contrary to the conven-
tional result, it will be shown that the interaction operator at
the EDA still takes on the position form, E(t) · r, rather than
the momentum form, A(t) · p, even though the radiation is
expressed in the Coulomb gauge.

Finally, the multipolar Hamiltonian formulation proposed
by Power et al.10 will be discussed briefly in the context of
the gauge transformation. The multipolar Hamiltonian, HMP,
was obtained through a unitary transformation of the free-
field Hamiltonian quantized in the Coulomb gauge. HMP

contains the interaction terms directly expressed as a multi-
pole series which is evidently gauge invariant. For this rea-
son, it was suggested that the multipolar part of HMP

corresponds to the gauge invariant interaction operator to be
used for defining the physically meaningful transition ampli-
tudes. It will be shown, however, in this paper that the uni-
tary transformation leading to HMP does not correspond to a
gauge transformation and that the so-called "multipolar"
gauge is not acceptable as a gauge condition for representing
the electromagnetic radiation.

The semi-classical GIF is briefly reviewed in Section II.
The field energy operator, HFE, is defined and examined in
Section III. In Section IV, the interaction operator, when the
radiation field is expressed in the Coulomb gauge, is derived
from the fully quantized GIF. Discussion on the multipolar
Hamiltonian is given in Section V.

Semi-Classical Gauge Invariant Formulation

The semi-classical gauge invariant formulation propos
first by Yang4 is briefly summarized in this Section. Th
more details can be found elsewhere.3,8

In the semi-classical theory, the time-evolution of th
material system in the presence of the radiation field
described by the time-dependent Schrödinger equation,

(1)

where HM(r, t) is the minimally coupled Hamiltonian for the
matter in the presence of the radiation field,

(2)

Here, A(r,t) and Ao(r,t) are respectively the vector and scal
potentials for the radiation field, and V(r) is the static Cou-
lomb potential. In this equation, the matter is denoted a
system of a single charged particle with charge q and mass m
for the sake of notational simplicity.

According to the principle of gauge invariance, the ele
tromagnetic radiation must be invariant under the followi
gauge transformation on the electromagnetic potenti
A(r,t) and Ao(r,t),

(3a)

(3b)

where Λ(r, t) is an arbitrary gauge transformation functio
from the (unprimed) original to the (primed) new potentia
{ A´(r, t), Ao´(r, t)}. In other words, the principle of gauge
invariance requires that all physically meaningful propert
must be equally described by either set of the electrom
netic potentials, {A(r, t), Ao(r, t)} or { A´(r, t), Ao´(r, t)}.

In quantum mechanics, the time-dependent Schrödin
equation in Eq. (1) is form invariant under any gauge trans
formation, since the Hamiltonian, HM(r,t), and the wave
function, |ΨM(t)>, are transformed respectively as follow
ing,11

(4a)

(4b)

where

(4c)

Here, HM´(r, t) and |ΨM´(t)> are the minimally coupled
Hamiltonian and the wave function expressed in the n
(primed) gauge, respectively. It is noted here that the m
mally coupled Hamiltonian in the new (primed) gauge is n
given as a simple unitary transformation of HM(r, t) in the
old (unprimed) gauge. Instead, there appears the additi
term involving the time derivative of the transformatio
function, which guarantees the form invariance of t

ih
∂ |ΨM t( )>

∂t
-------------------------= HM r t( , )|ΨM t( )>

HM r t( , )=
1

2m
------- p - 

q
c
---A r t( , )

2

+V r( )+qAo r t( , )

A' r t( , )= A r t( , )+ ∆Λ r t( , )

Ao' r t( , )=Ao r t( , ) - 
1
c
--- 

∂Λ r t( , )
∂t

-----------------

HM′ r t( , )= UHM r t( , )U†+i h
∂U
∂t
-------U†

|ΨM′ t( )>= U|ΨM t( )>

U= exp
iq
ch
------Λ r t( , )
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Schrödinger equation. It is thus important to emphasize the
fact that the expectation value of the minimally coupled
Hamiltonian which contains a time-dependent potential is
not invariant under a gauge transformation. The minimally
coupled Hamiltonian controls the time-evolution of the
material system interacting with the radiation through the
form-invariant time-dependent Schrödinger equation given
by Eq. (1).

The controversy over the form of the interaction operator
arises from the phase factor of the wave function which is
changed with a gauge transformation as shown in Eq. (4b).
Unlike |ΨM(t)>, the eigenfunctions, {|φ n

M>}, of the field-free
dark Hamiltonian, HM

o (r, t), are entirely independent of the
choice of the gauge since there is no radiation field involved
in HM

o (r,t). Therefore, the expansion coefficients of the
gauge dependent  |ΨM(t)> in terms of the gauge independent
{| φ n

M>} inevitably depend on the gauge chosen for |ΨM(t)>.
It is for this reason that the expansion coefficients defined in
the conventional formulation cannot be accepted as physi-
cally meaningful transition probability amplitudes which
must be invariant under any gauge transformation.

In the semi-classical gauge invariant formulation (GIF),
the following basis defining operator, HME(r, t), is employed

(5)

The two operators, HME(r, t) in the old (unprimed) gauge and
HME´ in the new (primed) gauge, are related by a simple uni-
tary transformation,

(6)

And, the eigenfunction, |ψn
M (t)>, of HME(r, t) satisfying the

following equation,

(7)

is related to the eigenfunction |ψ n
M´ (t)> of HME´(r, t) by the

following relation,

(8)

Here, it can be readily seen that upon a gauge transformation
|ψ n

M (t)> acquires the same additional phase factor as
|ΨM(t)> as shown in Eq. (4b). Now, |Ψ M (t)> can be
expressed in terms of {|ψ n

M (t)>}, instead of the eigenstates
of the field-free dark Hamiltonian, {|ψ n

M (t)>}, as following 

(9)

The gauge invariance of the expansion coefficients, {an
M (t)},

is evident since both |Ψ M (t)> and |ψ n
M (t)> carry the same

phase factor, as shown in Eqs. (4b) and (8), upon a gauge
transformation. Furthermore, the following relation can be
readily derived,

(10)
where P(t) is the power operator given as

(11)

Here, v(t) = p – (q/c) A (r,t) is the velocity operator. Then
Eq. (10) corresponds to the classical Poynting's theorem, by
which the rate of energy change is given by the power of 
system, if HME(r,t) is regarded as the energy operator repre-
senting the instantaneous energy of the material system
the presence of the radiation field. Furthermore, HME(r,t) is
reduced to the field-free dark Hamiltonian, H M

o (r,t), in the
absence of the field, A(r,t) = 0. Now, the gauge invarian
expansion coefficients, {an

M (t)}, defined in this fashion can
be regarded as the transition probability amplitudes between
the energy eigenstates of the matter regardless of a gauge
chosen for the radiation field.

Furthermore, at the EDA, it can be shown that the ene
operator in Eq. (5) is expressed as a unitary transforma
of  HM

o (r, t),

(12a)

and that an eigenstate of the energy operator is related to
corresponding dark eigenstate according to

(12b)

(12c)

where ε n
M is the eigenvalue of the dark Hamiltonian. Here,

(12d)

Now, the equation of motion for {an
M(t)} at the EDA can be

written as
 

(13)

The interaction operator is clearly in the position form.
is emphasized that Eq. (13) is valid no matter which gaug
chosen to expressed the radiation field. 

According to the semi-classical GIF briefly summarized 
this Section, the interaction operator for coupling the fie
free dark eigenstates always takes on the position fo
regardless of the choice of the gauge for the radiation fie
The position form obtained in this approach happens to co
cide with the interaction operator obtained from the conve
tional formulation with the radiation field expressed in th
Lamb gauge in which A(t) ≈ 0 and Ao(t) ≈ –qr · E(t) at the
EDA. In the semi-classical GIF, however, no gauge condi-
tion is assumed at all at the beginning and Eq. (13) is valid
for any gauge chosen.

Energy Operator for the Radiation Field

In this Section, the Hamiltonian for the free radiation fie
in the absence of the matter is examined first and then
full Hamiltonian for the combined system of the matter a
the radiation field is briefly discussed. The energy operator

HME r t( , )= HM r t( , ) - qAo r t( , )

=
1

2m
------- p - 

q
c
---A r t( , )

2

+V r( )+qAo r t( , )

HME′= U HMEU†

HME r t( , )|ψn
M

t( )>=E n
M

t( )|ψn
M

t( )>

|ψn
M′ t( )>= U|ψn

M
t( )>

|ΨM t( )>=  
n
∑ an

M
t( )|ψn

M
t( )>

d
dt
-----< ΨM t( )|HME r t( , )|ΨM t( )>=< ΨM t( )|P t( )|ΨM t( )>

P t( )= 1
2
---[v t( ) qE⋅ r t( , )+qE r t( , ) v⋅ t( )]

HME r t( , )= U1 HM
o

 U1
†

En
M

= εn
M

|ψn
M

t( )>= U1 t( )|φn
M

>

U1= exp
iq
ch
------r A⋅ t( )

i h
∂an

M
t( )

∂t
----------------= εn

M
an

M
t( )+  

m
∑ am

M
t( )< φn

M
| - qr E⋅ t( )|φm

M
>
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for the field in the presence of the matter is defined at the
EDA.

Free Radiation Field. The Hamiltonian for the radia-
tion field in the absence of the matter is given by9

(14)

When the Coulomb gauge (∇ · A = 0 and Ao = 0) is chosen,
the vector potential A(r, t) can be written in the quantized
form,

(15)

where a and a† are the creation and annihilation operators of
the radiation field, respectively, satisfying the commutation
relation,

(16)

In Eq. (15), e∧ , k and ω are the polarization unit vector, the
wave vector, and the frequency of the radiation respectively,
and  N = [ h–c/ 2ωV]1/2 is the normalization constant. Here,
the radiation field is treated as completely monochromatic
for the sake of notational simplicity. For the polychromatic
radiation field, the vector potential in Eq. (15) must contain
all the frequency and polarization components. With the vec-
tor potential given in Eq. (15), E(r,t) and B(r,t) in Eq. (14)
are given as following,

(17a)

(17b)

Then, the free-field Hamiltonian in Eq. (14) can be expressed
in the quantized form,

(18)

Again, the right-hand side of the Eq. (18) must contain the
summation over all the frequency and polarization compo-
nents in the polychromatic radiation field. The Hamiltonian
in the quantized form in Eq. (18) is unique for the Coulomb
gauge. It is not possible to obtain the Hamiltonian quantized
in any other gauge by direct transformation of the above
Hamiltonian expressed in the Coulomb gauge since the
quantization rule is completely different for every gauge
condition chosen.

Full Hamiltonian for the Matter and the Radiation . The
matter consisted of charged particles is polarized in the pres-
ence of the radiation field. Along with the external radiation
field, the resulting polarization of the matter also becomes a
source of the field acting on the charged particles in the mat-
ter. The overall field can be expressed in terms of the dis-
placement vector (or electric induction), D(r,t), and the
magnetic induction, B(r,t)5

(19a)

(19b)

where P(r,t) and M(r,t) are respectively the electric polariza-

tion and the magnetization arising from the polarizable m
ter in the presence of the external radiation field.

Now the Hamiltonian for the field in the presence of th
polarizable matter becomes7

(20)

and the full Hamiltonian for the matter and the radiatio
field is given as 

(21)

where HM(r,t) is the minimally coupled Hamiltonian, given
in Eq. (2), for the matter in the presence of the radiat
field. The use of D(r,t) and B(r,t) for the energy of the radia-
tion field in the presence of the polarizable matter is w
established in classical theory on electromagnetism. In 
quantum mechanical description of light-matter interactio
however, the polarization effect is often neglected in HF(r,t)
probably due to the fact that D(r,t) and B(r,t) are not easy to
express in closed quantized forms. Instead, HF(r,t) is often
replaced by the Hamiltonian for the free field, H F

o , in Eq.
(18). Then the interaction appears only in the material par
the Hamiltonian, HM(r,t).

At the EDA, the electric polarization can be written as fo
lowing,

(22)

and the magnetization can often be ignored. Therefo
HF(r,t) in Eq. (20) can be written as

(23)

at the EDA.
Energy Operator at the Electric Dipole Approximation.

In the semiclassical GIF, the energy operator, HME, for the
matter in the presence of the radiation field is given as 
unitary transformation of the dark Hamiltonian, Ho, as
shown in Eq. (12a). It will be now shown that the ener
operator, HFE, for the field in the presence of the matter ca
be defined through the same unitary transformation of 
free-field Hamiltonian, H F

o , in Eq.  (18).
When two quantum mechanical operators Q and S do not

commute with each other, it can be readily shown that 
unitary transformation of Q with U1 = exp[iS] becomes

(24)

When U1 = exp[(iq/ch–)r ·A(t)] (i.e. S = (iq/ch–)r ·A(t)), which
corresponds to the transformation function in Eq. (12d)
the EDA, the commutation relation in Eq. (16) can be us
to derive the following relations,

(25a)

(25b)

HF
o r t( , )=

1
2
---{ |E t( )|2

+| H t( )|2}

A r t( , )=N ê{ ae
i k r⋅ ω t–( )

+ a†e
- i k r⋅ + ωt( )

}

a  a†[ , ]= 1

E r t( , )=
iωN

c
---------- ê{ ae

i k r⋅ ω t–( )−a†e
- i k r⋅ + ωt( )

}

B r t( , )=iN k ê×( ){ ae
i k r⋅ ωt–( )−a†e

- i k r⋅ + ω t( )
}

HF
o
= hω a a†+

1
2
--- 

 

D r t( , )= E r t( , )+ 4πP r t( , )

B r t( , )= H r t( , )+ 4πM r t( , )

HF r t( , )=
1

4π
------  ∫ { E r t( , ) D⋅ r t( , )+ H r t( , ) B⋅ r t( , )} dV

H= HM r t( , )+ HF r t( , )

P r t( , )=q r E⋅ t( )

HF r t( , )= HF
o
+q r E⋅ t( )

U1QU1
†= Q+ i S, Q[ ]+ 1

2!
----- iS, iS, Q[ ][ ]

+
1
3!
----- iS, iS, iS, Q[ ][ ][ ]+ …

iS, p[ ] = 
iq
ch
------ A t( )

iS, a[ ] = − iq
ch
------ r ê⋅( )eiω t



724     Bull. Korean Chem. Soc. 1999, Vol. 20, No. 6 Duckhwan Lee

,
d in
tary

ed

the

e
ua-

e

(25c)

Since [iS, [··· [iS, a]]] = [ iS, [··· [iS, a†]]] = 0 and [iS, [···
[iS, p]]] = 0.

Thus, it can be readily confirmed that the relation in Eq.
(12a) is still valid when the vector potential in U1 is
expressed in the quantized form in Eq. (15). This means that
the energy operator for the matter in the presence of the radi-
ation field as defined by Eq. (5) is related to the field-free
dark material Hamiltonian by the unitary transformation in
Eq. (12a) even if the radiation field is quantized in the Cou-
lomb gauge. Thus, the eigenstates of the energy operator
retains the same phase factor as in the semi-classical
approach.

Now, it is interesting to find the unitary transformation of
H F

o with U1, which may be regarded as the energy operator,
HFE, for the radiation field in the presence of the matter in
analogy with the energy operator, HME, for the matter in the
presence of the radiation field given by Eq. (5). By writing
U1a†a U1

† = (U1a† U1
†) (U1aU1

†) along with Eqs. (25a) and
(25b), one can easily obtain the following result,

(26)

Here, Eq. (17a) has been used for E(t) at the electric dipole
approximation.

Now, the following relations can be readily verified,

(27a)

(27b)

where {En
F}  and {|ψ n

F(t)>} are the eigenvalues and eigen-
functions of HFE while {ε n

F} and {|φ n
F>} are the eigenvalues

and eigenfucntions of H o
F, the Hamiltonian for the free field

in the absence of the matter. The above relations are reminis-
cent of the relations for the material energy operator in the
presence of the radiation field as given in Eqs. (12b) and
(12c). That is, the eigenvalues of HFE and H o

F are the same,
but the eigenfunctions differ by a phase factor. Thus, in view
of the successful role of HME as the basis defining Hamilto-
nian for achieving the gauge invariant transition probability
amplitude in the semi-classical approach, one can expect the
similar role of HFE in the fully quantized description of the
radiation field interacting with the matter.

Interaction Operator

It is now possible to derive the interaction operator for
coupling the quantized radiation field with the quantum
mechanical matter states by using HFE in Eq. (26) as the
basis defining Hamiltonian.

The total Hamiltonian for the combined system of the mat-
ter and the radiation field expressed in the Coulomb gauge at
the EDA can be written as following,

(28)

HM, HF, HME and HFE are given by Eqs. (2), (24), (5), (26)
respectively. The last term in the above equation is adde
order to cancel out the extra term appeared in the uni
transformation of H o

F in Eq. (26). 
The time evolution of the combined system is describ

by the time-dependent Schrödinger equation,

(29)

where  |Ψ(t)> represents the quantum mechanical state of 
combined system. It is now possible to express |Ψ(t)> in
terms of the direct product of the eigenstates of HME and
HFE. That is,

(30)

where the indices n and m represents the eigenstates of th
matter and the radiation field, respectively. Then, the eq
tion of motion for {an,m(t)} is given by

(31)

As explained above, the eigenstates of HME and HFE are
related to the eigenstates of Ho

M and  Ho
F by the same unitary

transformation with U1 given by Eq. (12d). Thus, the abov
equation can be rewritten as following,

(32)

Since

(33)

where it can be proven that

(34)

iS, a†[ ]= iq
ch
------  r ê⋅( )e

-iω t

HFE= U1HF
oU1

†= HF
o
+qr E⋅ t( )+ q

2ω
c2h
---------

 
 
 

r ê⋅( )2

En
F
= εn

F

|ψn
F

t( )>= U1 t( )|φn
F
>

H= HM+ HF= HME+ HFE − 
q

2ω
c2h
---------

 
 
 

r ê⋅( )2

ih
∂ |Ψ t( )>

∂t
---------------------=H| Ψ t( )>

|Ψ t( )>=  
n m,
∑ an m, t( )|ψn

M
t( )>| ψm

F
t( )>

ih
∂an m, t( )

∂t
--------------------= εn

M εm
F+( )an m, t( )

+  
m
∑

n
∑ an m, t( )

< ψn
Mψm

F
| − ih

∂
∂t
----  − 

q
2ω

c2h
---------

 
 
 

r ê⋅( )2
|ψm

F ψn
M

>

ih
∂an m, t( )

∂t
--------------------= εn

M εm
F+( )an m, t( )

+  
m
∑

n
∑ an m, t( )

< ψn
Mψm

F
|U1 − ih

∂
∂t
----  − 

q
2ω

c2h
---------

 
 
 

r ê⋅( )2 U1
†|ψm

F ψn
M

>

U1
∂
∂t
----U1

†= − iT− 1
2!
----- iS, iT[ ]

− 1
3!
----- iS, iS, iT[ ][ ]−…

T=
∂S
∂t
------ and S= iq/ch( )r A⋅ t( ), 

ihU1
∂
∂t
----U1

†=q r E⋅ t( ) - q
2ω

c2h
---------

 
 
 

r ê⋅( )2
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So, Eq. (32) becomes

(35)

in which the interaction operator is clearly the position form,
not the momentum form, even though the Coulomb gauge
has been employed from the very beginning. Although the
position form of the interaction operator is not at all conspic-
uous at the Hamiltonian level given in Eq. (28), the position
form of the interaction operator is nevertheless recovered at
last mainly from the time derivatives of the time-dependent
phase factors of the energy eigenstates. 

Multipolar Hamiltonian

In late 1970's, Power et al. proposed the so-called the mul-
tipolar Hamiltonian, HMP, in which the interaction operators
of the form of the classical multipolar series are clearly
exposed at the Hamiltonian level.10,12 They suggested that
the multipolar Hamiltonian corresponds to the minimally
coupled Hamiltonian expressed in the "multipolar gauge" as
they called it. They obtained the multipolar gauge by the fol-
lowing unitary transformation of the minimally coupled
Hamiltonian given in Eq. (2),

(36)

with 

(37)

Here, the quantization of the radiation field is expressed in
the Coulomb gauge signified by the commutation relation
given in Eq. (16). They claimed that the unitary transforma-
tion in Eq. (36) corresponds to the gauge transformation
from the Coulomb gauge to the so-called multipolar gauge.

There are two serious difficulties in accepting the multipo-
lar Hamiltonian as a physically meaningful operator. First of
all, as clearly indicated in Eq. (37), the transformation func-
tion used to get HMP from HM is time-dependent. Because of
the time-dependent nature of the transformation, the time-
evolution of the wavefunction in the transformed representa-
tion now have to be given by the following equation,

(38)

The last term does not automatically vanish even at the
EDA because the time derivative of the vector potential in
the Coulomb gauge must be directly related to the electric
field strength which cannot vanish. Thus, the wavefunction
in the transformed representation does not satisfy the usual
time-dependent Schrödinger equation. In other words, it is
no longer possible to use the usual time-dependent
Schrödinger equation once HM is tranformed into HMP by

the time-dependent transformation function. 
The other difficulty with the multipolar gauge is that th

vector and scalar potentials implied from HMP does not
really corresponds to the acceptable legitimate gauge co
tion. According to Power et al.,10 the multipolar gauge is
identified by A(r,t) = 0 and qAo being expressed by the mul
tipole series. The vanishing vector potential implies B(r,t) =
∇xA(r,t) = 0 for the radiation field, which is clearly no
acceptable as realistic description of the radiation fie
beyond the EDA. It is a quite different matter for the Lam
gauge mentioned above in which A(r,t) is also null, since the
Lamb gauge is defined in a limited sense of the EDA.

Concluding Remarks

The quantum mechanical description of the interaction
radiation field with matter is examined from the point o
view of the gauge invariance. The full Hamiltonian for th
combined system of the radiation field with the matter h
been closely examined with the quantized radiation field
is pointed out that in the presence of the matter consiste
charged particles the displacement vector which includes
polarization effect due to the charged particles must be u
The resulting Hamiltonian expressed in the Coulomb gau
at the electric dipole approximation (EDA) is presente
Then, the basis defining energy operator for the radiat
field in the presence of the matter is defined by the unit
transformation of the free field Hamiltonian, analogous 
the energy operator for matter in the presence of radia
field. The use of such gauge-dependent basis defin
function guarantees the gauge invariance of the time-ev
tion of the combined system of the radiation field in the pre
ence of the matter as in the semi-classical description. It 
been proved that the interaction operator for coupling 
dark eigenstates of the free material eigenstates and o
free field eigenstates is given by the position form at 
EDA even if the Coulomb gauge is employed for the rad
tion field. In the conventional formulation using the fre
material and free field eigenstates, the Coulomb gauge
believed to result in the momentum form of the interacti
operator. 

It has also been shown that the multipolar Hamiltoni
proposed by Power et al. has serious theoretical difficulties
Since the transformation of the minimally coupled Hamilt
nian in the Coulomb gauge to the multipolar Hamiltonian
inherently time-dependent due to the vector poten
involved, an additional term must be added to the tim
dependent Schrödinger equation in order to maintain 
validity of the description of the time-evolution of the sy
tem. Furthermore, it is also pointed out that the so-cal
multipolar gauge which is believed to be the gauge condit
corresponding to the multipolar Hamiltonian cannot 
accepted as a legitimate gauge condition for the radia
field.
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i h
∂an m, t( )

∂t
--------------------= εn

M
+ εm

F( )an m, t( )

+  
m
∑

n
∑ an mt, t( )< φn

Mφm
F
|−qr E⋅ t( )|φm

F φn
M

>

HMP r t( , )= U HM r t( , )U†

= Ho−µ E⋅ t( )−M r( ) B r( )⋅

U=
iq
ch
------r A⋅ r t( , )exp

ih
∂ |ΨMP t( )>

∂t
---------------------------= HMP r t( , )|ΨMP t( )> - i h

∂U†

∂t
--------- |ΨMP t( )>
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