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The interface between two different polymers is characterized theoretically by using a model. This model is
based on the assumption that the monomeric friction coefficients of the two polymers are identical but a strong
function of the matrix composition. This model predicts that the concentration profiles are highly asymmetric
with substantial swelling of the slower-diffusing component by the faster component. To predict the behavior
of interdiffusion, three quantities are used: distance of interface Z*(f) due to the swelling, interfacial width W(¥)
which is most sensitive to the detailed composition profiling, and mass transport M(f) due to interdiffusion. It
is found that the more dissimilar polymer pairs, the faster the movement of the interface, thé quicker its inter-
facial width saturates to a limiting value and the slower its mass transport. These results are in qualitative

agreement with some experiments.

Introduction

Interdiffusion of polymeric molecules is important in
diverse areas of polymer science, ranging from ‘tack' of
rubber and crack healing in glassy polymers to the kinetics
of phase separation in polymer blends. The study of in-
terdiffusion in polymeric materials is of concem in
numerous fields such as the encapsulation of microelectro-
nics devices, rubber-toughened polymer composites, pro-
cessing of polymer blends, dynamics of phase separation in
polymer mixtures, polymer adhesion and welding of po-
lymer interfaces, kinetics of adhesion, and coating. Und-
erstanding the diffusion processes in polymers is the key to
successful production of polymers and application of po-
lymer products in industry. Due to relatively slow relaxation
processes of polymer chains in comparison to systems of
small molecules, polymers also offer the ideal systems for
fundamental studies of diffusion and kinetics of spinodal
decomposition. The examination of the interdiffusion bet-
ween different species of polymers has great practical
relevance and academic significance. However, due to the
rich equilibrium phase behaviors found in polymeric sys-
tems, ranging from miscibility and crystallization to glass
transition, diffusion complicate this subject of interdiffusion
to a spectacular degree.'” Polymer/polymer interdiffusion af-
fects the mechanical properties of polymers near the in-
terface. The final properties of polymers are determined by
the thickness of the interface or by the concentration profile
of the two polymers across the interface. The interdiffusion
process at a polymer/polymer interface is a strong function
of temperature, composition, compatibility, molecular
weight, molecular-weight distribution, chain orientation, and
molecular structures. In particular, differences in physical
properties of the two polymers have marked effects on the
shape of the concentration profile during the interdiffusion
process. For example, Brochars-Wyart and de Gennes™
showed that in asymmetric conditions polymers reptate in a
moving tube. E. Jabbari et al® showed experimentally that
polymer pairs with dissimilar physical properties can be
highly asymmetric in the concentration profile.

In the experiments on this subject, a thin film of polymer

species A is placed in contact with another polymer species
B film. The evolution of the initially sharp boundary
between A and B is monitored with respect to time by vari-
ous experimental techniques. If polymers A and B are com-
patible, the initial sharp interface will be smeared out as a
result of the ordinary Fickian type diffusion. The situation
is somewhat more delicate and interesting when polymers
A and B are only partially miscible, i.e. when the ambient
temperature is in the biphasic region. Klein and co-workers
have obtained direct measurements of time-dependent com-
position profiles at an interface between two partially mis-
cible polymers A and B (dPS: deutrated polystyrene /PS: po-
lystyrene).” In particular, interfacial broadening with elaps-
ing time was studied in detail. With the interfacial width W
(¢) defined as related to the reciprocal of the maximal com-
position gradient across the A/B boundary, it was found
that the thickness of the interface W(f) increases with time
slower than that expected from a Fickian process of W(f) o<
2, Since the interdiffusion process is driven by ther-
modynamic forces,® as the opposite of the phase separation,
the transport phenomena in the bilayer were expected and
found experimentally to depend strongly on thermodynamic
conditions such as temperature, interaction parameter bet-
ween polymers A and B, and molecular weights of A and
B. In the experiment of Steiner et al.,” where interfacial re-
laxation took place between polymer A-rich and polymer B-
rich layers prepared with coexisting compositions, the ex-
ponent o in a scaling law W(r) o ¢* was found to be con-
siderably smaller than the Fickian exponent 1/2, falling
between 0.25 and 0.5. Yet the experiment could not ex-
clude the possibility that deeper in the two phase region the
exponent o might be smaller than 0.25, since the ex-
periment was not performed far away from the critical tem-
perature for miscibility. The definition of maximal gradient
adopted in studies of Steiner, U. ef al.%’ is very sensitive to
the local structure of the interface (We will use a new
definition of W(¢), based on these studies of Steiner, U. et
al).

The interdiffusion process can also be described mean-
ingfully by observing M(f), the amount of species A tran-
sported across the initial boundary separating A and B as a
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function of time: M(#) cc #. This definition of M(f) is ex-
tremely insensitive to the local structure of the composition
profile and hence can be used to describe an interdiffusion
process in the most unambiguous way. In addition, it per-
mits the highest degree of precision in the experimental de-
termination of exponent P. Interdiffusive behaviors of po-
lymer mixtures can be characterized as following the tem-
poral changes of both maximal gradient in spatial dis-
tribution of composition and mass transport across the in-
terface. We believe that both the interfacial width W(f) and
mass transport M(¢) are required in order to obtain a more
sophisticated description of interdiffusion between polymer
blends.

On the other hand, Kramer and associates™'® showed that,
for polymer pairs with different molecular weights, the in-
terface moves towards the polymer with a lower molecular
weight as interdiffusion proceeds. Kramer et al' and Sil-
lescu'? described the interdiffusion in systems with a mov-
ing interface due to unequal fluxes of polymers A and B,
which were balanced by a net flux of vacancies across the
interface. By assuming the chemical potential of vacancies
to be zero in the melt state but the flux of vacancies to be
finite, they derived the following equation for the in-
terdiffusion coefficient:

D=¢A¢B[¢—’:AA+£"—ABH L, 1 +2x] )
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Here, D is the interdiffusion coefficient; A, and A are the
mobilities of polymers A and B, respectively; N, and Nj are
the number of repeat units of each polymer; ¢, and ¢p are
the mole fractions of each polymer; and Y is the Flory-Hug-
gins interaction parameter. In the theory, the overall mo-
bility is linearly related to the mobility of each component,
indicating that the interdiffusion coefficient is dominated by
the faster-moving component. Akcasu et al.”’> observed the
diffusion behaviors in dynamic scattering experiments with
ternary polymer solutions. They defined the vacancies as
the third component in a mixture of A and B polymers and
concluded that the fast-mode was obtained in the limit of
high vacancy concentration or a matrix with very high mo-
bility. Since the polymer mobility and the vacancy con-
centration are high above T, it is inferred that the theories
concerned describe the interdiffusion above T,. In fact, most
of the interdiffusion data in the literature™ which were col-
lected above the T, of polymers are consistent with the fast-
mode theory of interdiffusion. Kramer et al' used Ruth-
erford backscattering spectroscopy to follow the movement
of a gold marker at the interface between PS and d-PS with
different molecular weights. Reither et al.’® used X-ray re-
flection spectrometry for the same purpose. They observed
the movement of the interface toward the faster diffusion
component. Recent results from Sauer and Walsh’ and E.
Jabbari et al® have shown that, for polymer interfaces with
dissimilar properties, the faster diffusing component swells
the slower diffusing component at temperature near the T,
of the slower diffusing polymer. These results were ob-
tained by using a polymer pair consisting of PS as the slow-
er diffusing component with a T, of 101 °C and PVME
(poly(vinyl methyl ether)) as the faster diffusing component
with a T, of —27 °C. The concentration profile was highly

Bull. Korean Chem. Soc. 1997, Vol. 18, No. 7 721

asymmetric. Composto and associates'® investigated in-
terdiffusion in a polymer pair consisting of PS as the faster-
diffusing component with a T, of 105 °C and PXE (poly
(xylenyl ether)) as the slower-diffusing component with a T,
of 216 °C. Their results show that the concentration profile
for this polymer pair is also asymmetric with the swelling
of the slower-diffusing component, PS(Fig 7b). Defining the
interface position x;, as the depth at which ¢px=0.5, they
showed that the interface-shift Ax; relative to the position
of the interface at t+=0, was increased linearly with #* at all
diffusion temperatures. The characteristics of Ax;, which we
will define as Z*(f), are also required for a precise des-
cription of the interdiffusion between polymer blends. As
discussed below, this non-Fickian profile must be due to the
strong concentration dependence of the mutual diffusion
coefficient. For interdiffusion at homopolymer interfaces or
interfaces between polymers with similar physical properties,
the mobilities are relatively independent of composition
across the interfaces. However, for polymers with dissimilar
physical properties, the composition dependence of the
mobilities has a significant effect on the concentration pro-
file. Since the matrix is homogeneous on a microscopic
scale for many polymers, there exists a relationship between
the polymer mobilities that relates these mobilities to the
properties of the matrix.

Here we present a model for interdiffusion at polymer/po-
lymer interfaces for polymers with similar and very dis-
similar properties. This model is based on irreversible ther-
modynamics and accounts for the composition dependence
of the tracer diffusion coefficients of the two polymers
which are identical but a strong function of composition.
The composition dependence of the monomeric friction coef-
ficients is calculated approximately from the many ex-
perimental data for polymer blends. In addition, we con-
sider the Cahn-Hilliard interfacial energy associated with
the spatial variation of the composition at the interface dur-
ing the interdiffusion of polymers.

Theory

Description of the System. For our model, a simple
system is considered: The interdiffusion pair is schemat-
ically shown in Figure 1. One phase consists of the po-
lymer with low mobility (designated by s for "slow") with
vacancies randomly distributed on the lattice. The other
phase consists of the polymer with high mobility
(designated by f for "fast"). It is assumed that the con-
centration of vacancies is a small fraction of the total con-
centration and does not contribute to the free energy of mix-
ing. Since the polymers on each side of the interface have
different molecular weights and chemical structures, there is
a chemical potential gradient across the interface. The sys-
tem is modeled by using this chemical potential gradient as
the driving force for interdiffusion and by taking the as-
sumption of quasi-equilibrium on a microscopic scale,
which means that the polymer molecule is at equilibrium lo-
cally while interdiffusion takes place.

Irreversible Thermodynamic Formulation. We
adopt the Onsager formulation,'”*® which relates the flux of
the species across the interface to the chemical potential gra-
dient of each component:
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Figure 1. Schematic diagram of the interdiffusion pair con-
sisting of the polymers with low mobility (s=slow) and high mo-
bility (f=fast) with vacancies (O) distributed randomly in the lat-
tice.
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Here, subscripts s, f, and v stand for slow component, fast
component and vacancies, respectively. The symbol j, a
scalar, is the molar monomeric flux of component i for one-
dimensional diffusion; T is the absolute temperature; R is
the gas constant; I, is the molar monomeric chemical po-
tential of component k; A; is the Onsager coefficient of
component i; and A is the cross-coefficient of component i
due to the gradient of component £. In the above equations,
the Onsager reciprocity relations™ are used to reduce the
number of Onsager coefficients from nine to six. From one-
dimensional diffusion in the Cartesian coordinate system
with negligible excess volume of mixing and no change in
the lattice size, the sum of the three fluxes must be equal to
Zero:

Js+ip+jp=0 €)

This relationship can be used to express the vacancy On-
sager coefficients in terms of the coefficient of the other
two components:

Aivz—ZA,-j i=s,f,v j=s,f )]
i

Substituting for vacancy Onsager coefficients from Eq. (4)
and neglecting the cross-coefficients results in the following
relation between the fluxes and the chemical potential gra-
dients:

=RV ) i=s.f ©)
: Ay .
b= RV - s, f ©)

If the chain relaxation time has the same order of mag-
nitude as the experimental time, then the chemical potential
of vacancies is negligible. The experimental results of E.
Jabbari et al." from interdiffusion of a two-physically-dif-
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ferent-polymer pair (PS/PVME) above the T, of slower dif-
fusion component PS, indicate that the diffusion process is
independent of the molecular weight of PS on the as-
sumption that the chemical potential of vacancies is negli-
giblé. Assuming that the vacancy concentration is nearly at
equilibrium everywhere, the chemical potential of vacancies
is negligible compared with the chemical potential gradient
across the interface:

vu, =0 @)
then, Equation (5) reduces to the following:
== RV i=s.f ®)

Chemical Potential Gradient. It is known that
equilibrium properties ‘of a polymer mixture of spatially un-
iform composition can be approximately described by the
Flory-Huggins type lattice theory.® The Flory-Huggins
equation is used to relate the chemical potential to the en-
tropy and enthalpy of mixing of the two polymers. When
the mixture phase separates, interfaces are created between
two or more phases. At phasic boundaries, polymer chains
rearrange their conformations and repel chains of dissimilar
species. This leads to an increase in free energy of both en-
tropic and enthalpic origin. Now the total free energy will
take a generalized form:

F=] dvi:fo(‘l’)'*' &(V«Wﬂ ©

where f; is the free energy density of the system, and the
second term involving (V4)* accounts for the Cahn-Hilliard
interfacial energy associated with the spatial variation of the
composition. The phenomenological parameter x has the di-
mension of length squared and plays an important role in
control and formation of interfaces. It is generally a func-
tion of concentration ¢ and should also depend upon spec-
ific properties of both polymer species as well as ambient
temperature. In the Flory-Huggins theory for incompressible
polymer mixtures of lengths N, and N f; is given by the
familiar expression

fo= (Ni) In(¢)+[(1 - $)/N;] In(1 - ¢)+ x7 (1 - ¢) (10)

with ¢ being the volume fraction of polymer s. Since N,
and N; are large and the entropy of mixing is very weak
and relatively small, positive Flory 7y parameter is sufficient
to make s and f phases separate into s-rich and f-rich phases.
The polymer-vacancy interaction parameter is negligible.
This is a good assumption since the concentration of va-
cancies is an order of magnitude lower than the polymer
concentration. Then,

o +¢,=1 (11)

In general, depending on the initial conditions, polymers s
and f may either demix through spinodal decomposition or
interdiffuse into each other. Phase separation cannot be per-
fect when the system is not far enough from the critical
point for miscibility. By the same token, partial mixing via
interdiffusion will occur when a layer of pure polymer s is
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put in contact with a layer of pure f, but the diffusion is not
free in the sense of Fickian transport, and anomalous beha-
viors are anticipated. Since a complete mixing is prevented
by thermodynamics, the interface between s and f presents a
diffusion barrier where the composition crosses over from
its coexistence value of one phase to that of the other. Con-
sequently, the diffusion constant is negative at the middle
of the interface where the interfacial effect stabilizes the in-
terdiffusion process. In our situation, the initial arrangement
is a sharp contact between two unmixed polymer species s
and f. The thermodynamic driving forces, both from the
bulk and interfacial region, compel the system to mix
through the interfacial region.

The equilibrium theory of Helfand and others™? for the
interfacial structure of polymer blends also produces a sim-
ple expression for the parameter k() in

G, %
Mo=Z+ 1L (12)

where o, o, are the size of subunit. In the case of 6, =06,=

a2

-4 13
D= (13)
where a is a monomer length.

Then, the molar monomeric chemical potential for each
component is obtained from the functional derivative of to-
tal free energy with respect to the number of moles of that
component,

& _Ing+1 In(1-¢)+1
5% N N;

al
Vg (4)
2¢(1-9)
whereas the chemical potential gradient is obtained from the
derivative of monomeric chemical potential with respect to
the diffusion axis:

H= +x(1-2¢)

oF
Vu -V|— 15
L [5,-] (15)
1 1 a?
Vi=| —+————— Vo ————— V3. (16
u'z [¢SNS + (1—¢S)Nf zxsf] ¢| 2¢s(1_¢:) ¢| ( )

Here, Y is the interaction parameter between a monomer of
the slower and faster moving components, and N, and N;
are the number of repeat units for the slower and faster
moving components, respectively. Equation (16) relates the
monomeric chemical potential gradient of each component
to temperature, molecular weight of each polymer, com-
patibility parameter and composition. In arriving at Eq. (16),
we have neglected nonlinear terms involving (V¢)’ and (Vo)
V’¢. These terms are unimportant at late stages of in-
terdiffusion when the interface has sufficiently broadened.
Since the polymers are incompressible, the net exchange
of matter across the interface as a result of different dif-
fusion coefficients of the two polymers causes swelling of
the slower diffusing component by the faster moving com-
ponent. This swelling results in the movement of the in-
terface as interdiffusion progresses. The amount of swelling
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is related to the net flux of vacancies across the interface.
Therefore, the total flux of each component is given by the -
following relations:

ji=ii+&j, i=s,f 17

The total flux j of s across a plane fixed with respect to
the coordinate system is the sum of the diffusion flux of s
and the s transported by the vacancy flux, then:

Je=—[(1=¢s) AsVite — 0 A, V1] (18)

here, j and j/, scalar quantities, are the total molar monom-
eric flux of the slower- and faster-diffusing components,
respectively.

The Onsager Coefficients. One topic in studies of
interdiffusion is to derive the functional form of A(¢) at a
phenomenological level by setting the off-diagonal Onsager
coefficients to zero.'"”?* Recently some Monte Carlo simu-
lations also have been carried out.® But, there has not been
any attempt to formulate the transport coefficient A(¢) at
molecular-level. De Gennes’ has shown that the Onsager
coefficients for interdiffusion of polymer i due to a gradient
of its own chemical potential, A; are given by the following
equation:

1 N
Aﬁ‘%i@(l &) i=s,f 19

Here, f" is the monomeric friction coefficient of component
i as if it is a Rouse chain; N/ is the number of repeat units
between entanglements for component i; ¢, is the molar frac-
tion of polymer i; and Q is the volume of a quasi-lattice
site assumed to be the same for both molecules, respec-
tively. Roland and Ngai® measured the segmental re-
laxation in a two-physically different polymer blend, PS/
PVME, using dielectric spectroscopy. According to their
results there was a significant coupling and intersegmental
cooperativity in the relaxation spectrum of this blend. This
clearly indicates that the mobility of a chain in the polymer
blend matrix is strongly influenced by the other component
and suggests that the friction coefficients, £ and f" should
be identical but a strong function of the matrix composition.
Therefore, for compatible polymer pairs, Eq. (19) reduces to
the following:

g A 60-9)

(20)
Here, f7 is the molar monomeric friction coefficient for the
blend, which is strongly composition-dependent for a po-
lymer pair with dissimilar physical properties. The paramet-
er N° is the average number of repeat units between en-
tanglements for the blend. In a E. jabbari et al's paper,”
they have suggested a model for interdiffusion at interfaces
of polymers with dissimilar physical properties, such as PS/
PVME. In that, they evaluated the composition dependence
of the monomeric friction coefficient from the blend zero
shear'‘viscosity using the reptation theory. They predict that
the concentration profiles are highly asymmetric, with sub-
stantial swelling of the slower diffusing component by the
faster diffusing component.

The model presented in our study is based on the as-
sumption that the tracer diffusion coefficient of the two po-



724  Bull. Korean Chem. Soc. 1997, Vol. 18, No. 7

lymers is strongly coupled to the properties of the matrix.
Thus, the chain diffusion coefficient is related to the chain
molecular weight, the mesh size of the entangled chains and
the composition of the matrix, and is relatively independent
of the monomer structure of the diffusing chain. For sim-
plicity, we will take some reasonable approximations based
on the empirical results.

Flux of Each Component. Substituting the fluxes
from Eq. (2) and the chemical potential gradients from Eq.
(16) and the Onsager coefficients from Eq. (20) into Eq.
(17) results in a relation between the total flux of the
slower-diffusing component and the molecular parameters
of each polymer:

(N \[a=p) &
Is= (fmg){ . +Nf]

(A=¢) ¢ _ _ _a vy
[ A N, 22051 ¢s)} Vo - v, @1

It is possible to describe this transport process by simply ap-
plying the law of mass conservation. According to the con-
servation law, the temporal change of composition in space
can be described by the dynamic equation. For the bilayer
arrangement in Figure 1, the analytical description reduces
to a one-dimensional space denoted by the z-axis. For con-
servation of s-segmental, molar balance for each component
results in the following equation relating the rate of flux as
a function of distance to the rate of change of concentration
as a function of time:

3¢ 3js

——=-0- 22
ot oz 22)
where Q is the volume of quasi-lattice site. The time and
spatial dependence of the mole fraction of the slow com-
ponent can be obtained by substituting the total flux from

Eq. (21) into Eq. (22):

a0 _3 |(N V(a-), e
at 0z fmg N; Nf

s

(A-¢) , ¢ _ - 82y,
x [ T AL m] Vo-S Vel @

The above equation relates the time and spatial dependence
on the slower diffusing component to molecular properties
such as molecular weight, compatibility parameter, tem-
perature and the blend friction coefficient. The first term of
Eq. (23) accounts for the mobility of the polymer chains via
the monomeric friction coefficient f*, the second term ac-
counts for the differences in molecular weights of the two
polymers, and the factor in the front of the third term ac-
counts for the free energy of mixing. The other major diff-
erence from an ordinary Fickian diffusion equation is that
the third term can turn negative, amounting to a negative
diffusion constant and therefore "uphill diffusion”. The forth
term involving 9°¢/3z3 accounts for the presence of an in-
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terface separating two incompatible phases. If the two po-
lymers have similar physical properties but different molec-
ular weights, then the second term is the dominant term, as
in the case of the fast-mode theory."'* However, if the two
polymers have widely different physical properties, then the
first term dominates.

Now, consider the calculation of the molar monomeric
friction coefficient, f*. From many experimental data, we
can find that the composition dependence of the monomeric
friction coefficient for the polymer pair is nearly linear in
logarithmic scale (Figure 2). Green et al.”® measured the
tracer diffusing coefficient of PS in PS/PVME matrices of
different composition with forward recoil spectrometry and
they evaluated the matrix composition using the reptation
theory. In Figure 2, this variation of the monomeric friction
coefficients with composition is shown. The blend monom-
eric friction coefficient has changed by six orders of mag-
nitude through the composition variation from pure PS (the
volume fraction of the slower diffusing component PS, ¢=1)
to pure PVME (¢,=0). As PVME is added to a PS matrix,
the friction coefficient decreases dramatically owing to the
high mobility and the low T, of PYME and the friction coef-
ficient becomes dominated by the physical properties of
PVME. This indicates that PVME plasticizes the PS matrix
as interdiffusion takes place across the interface. Therefore,
for polymers with dissimilar physical properties, interdif-
fusion is accompanied by the swelling of the slower diffus-
ing component. In Figure 2, the dotted line is our ap-
proximate line representing the linear relation between log-
arithmic scale of monomeric friction coefficient, f* and
volume fraction of each component. So, f” can be expressed
by:

—log f" =G (1-¢s)+const
" =exp[-G(1-¢s)—const]

o< exp(G ¢s) 29
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Figure 2. Experimental (open circles) monomeric friction for
the PS/PVME pair at 120 °C. These data points were extracted
from Green et al.** with PS and PVME average Mw of 1.05x 10°
and 9.9x 10* and polydispersity indices of 1.06 and 2.10, respec-
tively. The dotted line is our approximate line representing the
linear relation between logarithmic scale of monomeric friction
coefficient f” and volume fraction of each component.
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where G is the slope of the dotted line in Figure 2 and is
the value related to the degree of difference in the monom-
eric friction coefficient of each polymer component. A great-
er value of G means that the polymer pairs will be more dis-
similar in component. On the other hand, the number of re-
peat units between the entanglements for the blend can be
estimated from the relationship between the entanglement
molecular weight and the plateau modulus.”

2
1 _|_¢# ¢
N '[(N;)w +e N;)m] (25)

In general, the entanglement molecular weight of most po-
lymers has the same order of magnitude. So, we can as-
sume by approximation that N° is independent of com-
position. Then, we can obtain the following equation:

9% _0 D xexp(—G ¢5) [———-—(1;})‘) +—¢’——J

ot oz N;

A=0) , & 5o (-6 | Ve -2 Vo,
x [T* AR @)] Vo~ T Vot (26)

where D is a constant including N°. We define R=r-1 using
the polymerization ratio r=N/Nj; the interfacial parameter K
to have the magnitude of the square of the radius of gyra-
tion: K=N,a% and we have also made a change of notation:
N=N;. We scale length by the natural length K in the
problem and make the conversion z—z/K'?. We scale time
with the unit T7=2K (N,)/D, which is on the order of the rep-
tation time of a single chain in a melt, and make the
transformation #—t/t. Rewriting the resulting Eq. (26) in
terms of the rescaled variables, we find:

9, 0 .,
& —gz—{CXp( G¢:)1+R¢s)

X[2H2R —4N) ¢ +4N ¢¢) V§, - V*¢, 1} @7

Boundary Conditions. As long as the mass transport
has not approached the outer two boundaries of the thin
film, the interdiffusion process can still be described by Eq.
(27). The initial and boundary conditions to solve the above
diffusion equation are:

t=0 6. =0 0<z <8,
£=0 o=1 r5ocs+s, (28a)
3, Do,
2=0 @ g, £%o
Baz 8‘323 for ¢>0
= ¢ _ & 28b
z=6+4; % 0, 3 0 (28b)

where we set the film length 3,=8=0.5 in order to nor-
malize the full film length. The boundary conditions of the
Eq. (28b) represent no-flux boundary conditions. In Eq.
(28a), we take ¢,=0 and ¢,=1, which is a step function as
corresponding to phases which are 100% f-rich and s-rich at
t=0, respectively. This situation in the condition is described
in Figure 1. For the polymer pair with dissimilar properties
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the differential equation becomes stiff and the second initial
condition of Eq. (28a), is a measure of the stiffness for the
differential equation.

Numerical Method

It is not feasible to seek the analytical solution of the non-
linear partial differential equation of Eq. (27). But num-
erical solutions can be obtained by discretizing Eq. (27)
with finite differences. Consider the situation namely, a bi-
layer of initially pure polymer s and polymer f. Regarded as
a one-dimensional problem, the left-hand side is occupied
by f and the right-hand side by s initially. The evolution of
the bilayer system starting from the initial profile of a step
function is described by the application of the standard
Crank-Nicholson method to update at every time step the
profile described by Eq. (27). In discretizing d¢(z)/dt term
as (09" )/AL, 9z 1)/0z as (§":i-¢":1)/2Az, and similarly for
its higher spatial derivatives, At is chosen as A==10"® and a
grid point Az as Az=10"°. We transform many nonlinear
terms, such as V¢, V29, V3¢, V4¢, and their products, into
linear terms using the Newton method. Our differential
equation is solved with a variable-step-size finite-difference
method. We allow the system to evolve 50000 time steps as
far as the boundary condition will remain valid.

Result and Discussion

As discussed in the Introduction, we consider three quan-
tities, one reflecting the local structure at the middle of the
interface and others depicting the overall profile of the com-
position field, in order to provide a reliable description of
the interdiffusion process. Now we define the interfacial
width W(¢f) for our model, in the form similar to the de-
finition of ref 6; namely, we define new W(r) in terms of
the maximal gradient of composition. For a case such as the
present study, W(#) is simply given by

-2 2]V
W(t){(aﬂg*,t)) _[8¢(z=1080Az,t=0) ] (29)
74 74

where z* is the value of z at $=0.5, and z=100A2' is the in-
itial interface position since we take 200 grid points in the
interface-around area. W(¢) is given on unit of K'. Because
of the suppressed diffusion due to the "spinodal barrier", it
is expected that the exponent o in the power law W(r) oc %,
does not exceed 0.5. Moreover, the value of o does not
have to stay between 0.25 and 0.5 since the existence of an
optimal stationary interfacial width is plausible in a steady-
state of interdiffusion.

Another characteristic property is the mass transport M(f)
of polymer f transported from the left-hand side of the in-
terface to the right. M(¢) is calculated according to

M(t)=€x j:;::dz ¢, t) (30)

where € is a constant and ¢~=1-¢, in according to Eq. (11).
Since we are concerned with the narrow area around the in-
itial interface, only 100 grid points (100 Az's) from each
side (from the slower and faster sides) around the initial in-
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terface are considered. At =0, the range of grid points from
100th Az to 200th Az is occupied only by the slower diffus-
ing component. It is expected that M(f) will increase with
time slower than £ for the dissimilar couples of polymer
blends.

And the last property of the interdiffusion process ex-
amined in the study is the distance of interface Z*(f), from
the initial interface position at #=0. It is expected that Z*(¢)
also will increase with time slower than 2 for the case of
partially miscible couples of polymer blends. That is, the
diffusion is not free, with the system inside the two-phase
region.

It is necessary to consider )., which is the value of the
Flory interaction parameter ¥ at the critical temperature T..
In the Flory-Huggins mean-field model of polymer mixing,
X. can be expressed by

X =(N\N; +\N, V2N, N, (31)

for the case N=N,, i.e, R=r-1=0 and N=Nj.=2, and for
the case 2Ng=N,, i.e., for R=1, N.=2.914. One expects to ob-
serve the interface broadening and eventual relaxing to its e-
quilibrium dimension, as experimentally found in ref 7. In
fact, at a given temperature, i.e., for a given %, the two
phases will coexist in equilibrium with compositions det-
ermined by two roots of the following equation:

1 +N(1-2¢)-R =0 (32)

n_9

(1-or-
which corresponds to the state u=0, where | is obtained
from the energy of the Flory-Huggins lattice theory. In our
model N=2 for R=0 and N=3 for R=1 are used to have the
situation near the critical point.

By this numerical analysis, we can obtain the following
results. First, the concentration profile can be obtained. In

.
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Figure 3. The concentration profiles of the interfaces-around
area for G=0, N=2, R=0, at consecutive times. We denote the
coordinate perpendicular to the films as z. The initial condition
consists of the pure f-film separated from the pure s-film by a
sharp interface at z=0.5 This range of z is very narrow compared
to the widths of thin films of both polymers (0.001% of the en-
tire width).

Jae-Myeong Jung and Hyungsuk Pak

Figure 3, the simulated concentration profile for R=0
(polymerization ratio is 1, N=Np, N=2, and G=0, at con-
secutive times after onset of the interdiffusion is shown.
The step function is the initial condition which describes
the contacted polymer pairs. The time is expressed in scaled
units of 2K (N,)/D and the length in scaled units of K2
The polymers begin to diffusing into each other side. Since
it is the case of very similar polymer pairs, the time evo-
lution of the concentration profile is almost the Fickian type,
that is, the transport phenomenon appears almost the Fick-
ian. In fact, the full range of z in the above figure is very
narrow compared to the width of the thin films of both po-
lymer (that is, 0.001% of the entire width, §+9, since the
full range of the system is normalized to 1). In this figure,
the Fickian characteristics are shown as anticipated. To
quantify our analysis, we calculate the interfacial width W(¢)
as a function of time. In Figure 4, this characteristics are
described by means of the time evolution of interdiffusion
width W(r), since the process can be inspected more clearly
by searching for a scaling law W(¢) o< ¢*. And we can find
the linear relation in the plots of log[W(f)] versus log(f).
The best expression of the power-relation is #*', and the
exponent o (the slope in the plots) is found to be 0.461<0.5,
which is smaller than the Fickian characteristic value of ex-
ponent o, as expected. Next, we calculate the time de-
pendent of M(#). In Figure 5, the linear logarithmic scaled
relation with the time evolution of M(¢) is shown, which is
very similar to W(¢) in form and the exponent P (the slope
of the plots) is 0.4588 according to the scaling law M(f) o
#. It also resembles the Fickian characteristics. Since the
curves are not straight lines throughout all the time interval
in either Figure 4 or Figure 5, power laws such as W(f) o
* and M(f) < # hold only for a certain period during the in-
terdiffusion. In this case, the behaviors associated with the
interfacial dynamics are relatively similar to those related to
mass transport, namely, both quantities, W(f) and M(y),
which describe the Fickian-like behavior of interdiffusion
for similar polymer pairs.

Now consider the other case, that is, the interdiffusion of

logW(t)
241

2.5 ¢

log(t)
Figure 4. The time dependence of interfacial width, W{(¢) for G=
0, R=0, N=2 plotted in the double-logarithmic form, that is, the
plot of log[W(¢)] versus log(r). The slope a is 0.461. This beha-
vior is almost Fickian characteristics.
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log M(t)|
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log (t)
Figure 5. The time dependence of mass transport M(z), for G=0,
R=0, N=2 plotted in the double-logarithmic form, that is, the plot
of log[M(#)] versus log(r). The slope B is 0.4588. This behavior
is very similar to W(f) of Figure 4.

polymers with dissimilar physical properties. Comparing
this case with the above similar polymer pair case, we find
the differences in behavior of the diffusion processes for
each property discussed. In Figure 6, the asymmetry of the
simulated concentration profile for G=2 predicted by the
model is shown. The non-zero value of G signifies that the
polymer pairs have different monomeric friction coefficients
for each component. This difference is due to the diff-
erences in glass temperature T, chain length, mobility, etc.
According to this figure, the concentration profile for the
Fickian model with the constant diffusion coefficient, for
we put R=0 and G=0, is symmetric whereas the profile for
R=1 and G=2 is asymmetric, with the original interface
moving into the slower diffusing polymer layer as a swel-

s
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Figure 6. Comparison of the concentration profile for G=2, R=1,
N=3 with that for G=0, R=0, N=2 at t=1001. The dotted curve is
the original interface. Different diffusion behavior for each case
is described.
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ling front. It is in good agreement with studies by E. Jab-
bari et al? which indicate that the interface moves as a
sharp front into a slower component layer. Time de-
pendence of the concentration profiles for G=1 is shown in
Figure 7a. The time evolution of this simulated profile is
for t=501, 1501, 2507 and 350t. This figure shows that the
concentration profile remains asymmetric as the interdif-
fusion proceeds and that the interface moves like a swelling
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Figure 7. (A) The concentration profiles for G=1, R=1, N=3 at
consecutive times (=501, 1507, 2501, 3507). The dotted curve is
the original interface and the interfacial movement is shown by
remarking z*. These behaviors are in good agreement with many
experimental results (Figure 7B). (B) Composto et al's ex-
perimental volume fraction profile of PXE in the PS/PXE dif-
fusion couple. The couples are heated to 184 °C for (a) 1.0 h, (b)
4.0 h and (c) 16.0 h. The interface position z* at which ¢pxe=0.5
is represented (here, expressed by xi).
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Figure 8, Comparison of the time dependence of the distance of
interface Z*(f) from the initial position, for G=2, R=2, N=3 with
that for G=1, R=2, N=3 at consecutive times, plotted in the dou-
ble-logarithmic form, that is, the plot of log[Z*(f)] versus log(¢).

front into the slower component layer. The arrows represent
the position of interface defined above as z* and the move-
ment of the interface can be shown. In this case, we set R=
1, which means N=2N; and N=3, in order to obtain a si-
tuation near the critical point, instead of one far from the
critical point. In accordance with many experimental results,
e.g., PS/PXE pair interdiffusion experiment of R. J. Com-
posto and E. J. Kramer (Figure-7b), the interface moved as
a sharp front into the slower component side (in the ex-
periment of Figure 7b, PXE is the slower component than
PS). This movement is due to the swelling of the slower
component by the faster component. In the comparison of
the two figures (Figure 7a and 7b), the good agreement
between the simulated concentration profile and the ex-
perimental data can be found. So by using this model the
behavior of interdiffusion in this kind of polymer pairs can
be described. In Figure 8, the time evolution of the distance
of interface for each case can be shown using the plot of
log[Z*(¢)] versus log(?) for each case. The interface shift, Z*
(), relative to the position of the interface at =0 is cal-
culated by using the definition of interface position; z* is
the position at $,=0.5 as in the Eq. (29). As anticipated, the
movement of interface for G=2 is faster than the other. In
the comparison of the interface movements for G=1 and G=
2, the interface of G=2 moves farther from the initial front
than that of G=1 for the same time step. Since the case of
G=2 is the interdiffusion of a dissimilar polymer pair with
more different monomeric friction coefficients between each
component than those of the G=1 case, we can predict that
a bigger discrepancy in physical property between each po-
lymer, especially in the monomeric friction coefficient,
means a faster interface movement, that is, a faster swelling.
The time dependence of the interfacial width W{(), is shown
in Figure 9 with the plot of the log[W(#)] versus log(r) for
each case. The interfacial width of G=2 from the initial
sharp front increases by greater amount than that of G=1. In
Figure 10, the plot of the log[M(f)] versus log(s) for each
case is shown. For the time evolution of M(¢), the similar
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log (t)

Figure 9. Comparison of the time dependence of the interfacial
width W(¢) for G=2, R=1, N=3 with that for G=1, R=1, N=3 at
consecutive times, plotted in the double-logarithmic form, that is,
the plot of log[W{(r)] versus log(?). The slope o is 0.2404, 0.2489
for G=2, G=1, respectively.

log M(t)
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Figure 10. Comparison of the time dependence of the mass
transport, M(f) for G=2, R=1, N=3 with that for G=1, R=1, N=3
at consecutive times, plotted in the double-logarithmic form, that
is, the plot of log[M(f)] versus log(#). The slope o is 0.2952,
0.3653 for G=2, G=1, respectively.

behavior can be found, that is, the mass transport M(¢) of G
=2 increases’ faster than that of G=1.

Here, two interesting behaviors can be found. The first
behavior of interest is that the magnitudes of the exponents
o and B decrease as the G value increases. The values of o
are 0.2638, 0.2404 and the values of B are 0.3653, 0.3133,
for G=1, G=2, respectively. Comparing these results with
the value of o and B for the similar polymer case of R=0
and G=0 (0:=0.461 and P=0.4588), this tendency is clear.
Even though the interfacial width W(#) and the mass tran-
sport across the interface M(f) are enlarged in proportion to
the difference of physical properties between polymer com-
ponents, the components are saturated quicker to a stable in-
terface of finite width, that is to say, if the value of G be-
comes greater, then more non-Fickian characteristics can be
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found. It is the suppressed diffusion due to the spinodal bar-
rier, so diffusion is not free with the system in the two-
phase region or more restriction for penetration. The second
interest-holding result is the smaller value of o than 0.25,
that is 0.2489, 0.2404, for G=1, G=2, respectively. From a
simple dimensional analysis, one tends to conclude that the
exponent ¢ has to fall between 1/4 (the Cahn-Hilliard term
dominant®) and 1/2 (the Fickian characteristic). But com-
petition and balance between interfacial and thermodynamic
forces may lead to a much smaller o than the "lower bound"
0.25. From Klein's data for interdiffusion between two par-
tially miscible polymers (PS/d-PS), the exponent o is evalu-
ated to be 0.21. And the studies of S. Q. Wang et al
represented the range of 0.10-0.23 for o when § falls in the
range of 0.37-0.41.3 Evidently, both experiment and theory
allowed o to be smaller than 0.25, at least for the definition
of interfacial width specified by Eq. (29). The fact that a is
smaller than 0.25 means that the exponent o alone cannot
well characterize the entire transport process even when the
system is near the critical point for complete mixing. It at
best depicts how sharply the composition field varies across
the interface. This indicates that the ™"uphill" diffusion
represented by the third term on the right hand side of Eq.
(27) is well balanced by the Cahn-Hilliard interfacial effect
described by the fourth term in Eq. (27). This explains why
the exponent has become so small, even falling below 0.25.

Conclusion

We have studied the phenomena of interdiffusion at in-
terfaces of dissimilar polymers from a theoretical viewpoint
by deriving a dynamic model for collective interdiffusion
and spinodal decomposition in polymeric materials. The
model was applied to the polymer pairs with similar pro-
perties and to polymer pairs with very dissimilar physical
properties to predict the concentration profile at the in-
terfaces. Since the friction coefficients are highly com-
position dependent, the concentration profiles have different
forms for the different values of G. In the case of dissimilar
polymer pairs, the concentration profiles were asymmetric,
with a substantial swelling of the slower-diffusing phase as
a swelling front, and can be compared with symmetric
cases. Using this model, the time dependent properties, W(),
M(t), and Z*(f) can be calculated. And the tendency of
these properties for each G value is shown. Our predictions
agree well with the available experimental data. Nev-
ertheless, we point out that the time dependence of the in-
terfacial width W(¢) alone is not sufficient to fully charac-
terize the transport process. We predict in our calculation
that W(f) stop broadening after a sufficiently long time
period and loses its function as a monitor of the in-
terdiffusion process. Also, during a certain period when a
power law such as W() holds, it is found that o is actually
smaller than 0.25, in agreement with some experimental
data. The other quantities such as the mass transport M(f)
and the distance of interface Z*(f) replace the function of W
(f) to provide an illustration of interdiffusive transport.

It is necessary to improve our calculation for more re-
liable results. For example, we need the higher skills of
numerical method to describe the interdiffusion phenomena
for a long time stage.
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