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Lewis acid-induced intramolecular annulations of allylsila-
nes with an electrophilic terminus such as epoxide, aldehyde,
ketone, enone, acetal, oxonium ion, and iminium ion were
extensively applied for a regioselective formation of several
ring systems.! However, the cyclization of allylsilane with
simple alkene terminator is quite rare.? We describe herein
the preparation of the polyenes with an allylsilane moiety
3 using 2-(phenylsulfonylmethyl)-3-(trimethylsilyl)propene (1)
and their cyclizations to form methylenecycloalkanes. Com-
pound 1 was readily prepared by the reaction of 2-(iodome-
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Table 1. Allylation of the bifuntional reagent 1
Allylsilane 3

Entry  Allylic bromide Yield (%)
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SOzPh

)\/\ Br /(;/\,SiMea 82

2 e / I S0,Ph 79
SiMeg
I l SO,Ph 90
S8 (Y.
SiMey

SOPh
¢ ﬁ\/\/\ Br /"/Z/ 95
SiMe;
A 3
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thyD)-3-(trimethylsilyl)propene with sodium benzenesulfinate
at 100 T in N,N-dimethylformamide® When the bifunctional
reagent 1 was treated with n-butyllithium in THF at —78
€, o-lithiosulfone 2 was generated selectively and then treat-
ed with allylic bromides gave the correponding allylation
products 3 in good yields (Table 1).

When the allylsilane 3b was treated with stannic chloride
(3 equivalents) in dichloromethane at 0 C to room tempera-
ture, the methylenecyclohexane 4 was produced in 76%
yield.* Due to complexation with the sulfone oxygens an ex-
cess of Lewis acid was required. The allylsilane cleanly cycli-
zed to the cyclohexane having an exocyclic double bond. The
regioselectivity in this reaction is controlled by the remark-
able ability of silicon to stabilize a developing carbocation
B to itself® Stannic chloride appears to be the most promi-
sing Lewis acid. for the cyclization of the allylsilanes 3.

=<:SIM93 B SiMes  pa SiMe;
e e et i
S0Pk THF,-78°C S0,Ph SO,Ph
L R

1 2 ‘3

In the 'H NMR spectrum the two methyl protons of 4
appear at higher field (5 0.82 and 1.02) than the methyl pro-
tons of 3b (8 1.54 and 1.62). This indicates that the methyl
groups in 4 are bonded on sp® carbon atoms while the methyl
groups in 3b are attached to sp? carbon atoms:

On the contrary, the reactions of the allylsilanes 3a and
3e with Lewis acid afforded only desilylated products.

SOzPh SACIYCHCl S0zPh
D e
/(l/SIMeg 0°C -t
3b 4

Cyclization of 3¢ under the same reaction conditions gave
8-methylenedecaline 5 in 75% yield.® Surprisingly, this reac-
tion occurred stereoselectively, and only 5a was formed bet-
ween two possible epimers. The chemical shifts of the three
methyls at § 0.70, 0.78, and 0.86 in the 'H NMR spectrum
indicates that the methyl groups are no longer attached to
olefinic carbon atoms. The stereochemistry at the C-7 pheny-



778 Bull. Korean Chem. Soc. 1996, Vol. 17, No. 9

Isulfonyl group of the product 5a clearly appears to be equa-
torial on the basis of the 'H NMR data of the C-7 proton
(8 3.63, dd, J=12.2 and 3.8 Hz). The larger coupling constant
(/=122 Hz) indicates that the proton Hx is located at the
axial position. The shifts of the methyl protons to higher
field in the cyclized product 5a are also observed.

. SO.Ph SNCl4/CHLCly Ha
I el SO.Ph
SiMeg 0°C-n Hg
Hy
3¢ 5a
Ha
Hy
M8 50,eh
5b

The cyclization of 3d was not stereospecific, and gave a
diastereomeric mixture of 13-methyleneperhydrophenanthre-
nes 6 in 62% yield.” The epimers 6a and 6b were isolated
by the repeated chromatography (silica gel, hexane : ether=1
:1), and the ratio was 2:1. In the 'H NMR spectrum of
6a the four methyl protons appear at § 0.79 (6H), 0.83 and
0.86, and the Hx proton appears at & 3.59 as a double doublet
(/=122 and 4.0 Hz). The 'H NMR spectrum of 6b has four
peaks at & 0.78, 0.80, 0.81, and 0.87 for the methyl protons,
and a doublet at § 3.73 (/=6.6 Hz) for the proton (Hx).

Ha  so,Ph Ha
M Me [Me/ M Me |Me
e IHg e |Hy
g 1
Mo X S0O,Ph

Me

6a 6b

To our surprise all attempts to cyclize the allyisilane 7
having no phenylsulfonyl group with stannic chloride or
other Lewis acids failed. Only desilyation was occurred to
produce 8 from 7.° It is noteworthy that the phenylsulfonyl
group play an important role in the cyclization process, how-
ever, the role is not clear at present time.
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thylsilylmethyl)propene with geranyl bromide. 7: 'H NMR"
5 002 (9H, s), 1.54 (2H, s), 1.61 (6H, s), 1.69 (3H, s),
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The porphyrins and related macro cyclic systems are the
most widely studied of all macro cyclic compounds.! The
convenience of meso-substituents as sites for functionaliza-
tion, controlling the substituents geometry and the wealth
of available meso-substituents make meso-substituted porph-
yrins ideally suited for use in various model systems. Al-
though porphyrin is easily obtainable from pyrroles and alde-
hydes, generic methods are still limited to symmetric porph-



