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It has been well known that the Grad thirteen-moment equations have solutions only when the Mach number is
less than a limiting value for the stationary plane shock-waves. The limit of Mach number has been re-examined
by including successive terms in the series expansion of distribution function. The method employed is the linear
analysis of moment equations near up-streaming and down-streaming flows. For the thirteen moment case, it has
been confirmed that equations have solutions only when the Mach number is less than 1.6503, which is consistent
with the literature value. For the case of twenty moments, the limit of Mach number is decreased to 1.3416.

Introduction

The shock wave problem is one of the classical problems
in the development of kinetic theory of gases.! It has been
understood from several different theories.” For weak plane
shock-waves, the Navier-Stokes theory predicts a smooth
shock profile which is very close to that observed experimen-
tally.? The shock-strength is characterized by the Mach num-
ber M of shock speed.

For strong shocks, more realistic results are obtained from
the Boltzmann equation? However, it has turned out that
classical methods of solution have inherent deficiencies for
strong shock waves?* For example, Burnet equations have
no solutions for M>2.1 and Grad 13-moment equations for
M>165. After the note of Holway,' it has been recognized
that the mathematical reason of deficiency in the Grad mo-
ment equations is that the series expansion employed in
the method does not converge above certain critical Mach
number.

In the Grad moment method,” the velocity distribution
function of gases is expanded in the form

SORD=fO S < @r)® How) )
a=0 .

where /¥ is the local Maxwellian; H®(w) is the tensor Her-
mite polynomial of the a-th order with w=(m/ksT)"*(v-u),
the local fluid velocity u, the molecular mass m, the local
temperature 7, and Boltzmann constant ksz; ©® is the tensor
expansion coefficient which is the moment of H®; and the
symbol ® represents the scalar product between two ten-
sors. In the 13-moment approximation, the expansion coeffi-
cients beyond the first 13 are truncated. When the additional
terms are retained in the expansion, for example, taking the
first 20 moments, the accuracy of the distribution function
should be increased provided that the series expansion con-
verges. Holway stated in his note that limit of convergence
will asympiotically approach M=1.851 as the number of
terms in the expansion is increased.*®

In this paper, we re-examine the critical Mach number
of Grad moment equations by including successive terms
in the series expansion. We will not try to show rigorous
mathematical reasons for the presence of singularity in the
moment equations. The purpose of present work is to show

that the limit of Mach number does not increase as contrast-
ed with Holway’s statement, when more terms are added
in the expansion.

Formulation of the Shock Wave Problem

Let the x axis be directed along the flow perpendicular
to a shock wave. The shock itself is travelling in the negative
x direction with constant speed. However, it can be arranged
to locate the shock layer to a fixed position by performing
Galilei transformation. In this coordinate frame, the gases
far from the shock layer constitute the up-streaming flow
at x—>—oo with the speed #' which is equal to the shock
speed in opposite direction, and the down-streaming flow
at x—>+oo with a speed . The gases far from shock layer
are in equilibrium so that the corresponding distribution fun-
ctions are Maxwellian.

For the one-dimensional problem under consideration, the
Boltzmann equation takes the form

oL =[ele, Q) —fpaas, )

with conventional notations.® The mass, momentum and en-
ergy conservation equations are followed from (2):

d _
ir (pu)=0 (3a)
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where the mass density, p; the x-component of flow velocity,
u; the xx-component of pressure tensor, P,; the x-component

of heat flux, @;; and the internal energy density, & are de-
fined as follows.

p= J mf(x,v)d’y (4a)
pu= f o f vy (4b)
P.= jm Cfxy)dy (4c)
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Q= [ 3 mC.Cts (4d)

pE= j —;—mCchx,v)dBv (de)

where C,=v,—u and C*=(v,—u)*+v,2+v.2 With the conve-
ntional definition of kinetic temperature, the internal energy
density is related to the temperature for dilute gases as £=
3ksT/2m. At equilibrium, the P,, reduces to pksT/m and the
@, vanishes.

Integrating the both sides of (3a-c) from —o to +oo, the
well-known Rankine-Hugoniot conditions are derived.

pu'=p (5a)
pksT /m+ '’y = pksT'/m+ o) (5b)
SpiutksT/m~+ p'(u'y =5 wksT/m + /() (50)

where the superscripts ¢ and f denote the values at the up-
stream and the down-stream, respectively. It is convenient
to define dimensionless quantities,

Po=p/p', uo=o/u', To=T/T ®)
and introduce a parameter B=(3/5)M % where the M is the
Mach number of up-streaming flow given by

M=u'(3m/5ksT)"? (D

In general, the Mach number can take any real number of
1<M<w, so that 0.6>B>0. The Rankine-Hugoniot conditions
are rewritten by

501;0 =1 (8a)
#2+5BTo=1+5B (80)

which constitute boundary conditions of the shock profile.
The two sets of solutions of (8a-c)

=1, =1, T¢=1 (9a)

and

_,_ 4 . 145B o, (3—B)1+5B)
P=Trep /= T

4 168 ©b)

are limiting values of the up-stream and the down-stream,
respectively.

The conservation equations of shock wave are also obtain-
ed by integrating (3a-c) from -0 to a position in the shock
zone,

p'u'=pu (10a)
pkeT/m + g’y =P+ pu? (10b)
Sp'uksT /m + p'(u')* = 2uP. + 2Q,+ 3puksT/m + pu® (10c)

Defining the dimensionless quantities

p=p/p, u=u/', T=T/T (11a)
P=P./lp@], @=Q/[p'@)"]. (11b)

(10a-c) can be rewritten by
=1 (12a)
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P+u=1+B (12b)
2uP+2Q+3BT+u?=1+5B (12¢)

The Navier-Stokes theory employs the linear constitutive re-
lations for unknown P and @. In the moment method, one
explores the equations of P and @ which are described in
the following section.

Moment Equations
The derivations of moment equations are straightforward.

For P, multiplying both sides of (2) by mv,2 and performing
integration, one gets

L RO+ 3Pt pu) = A 13)

where
R= [mCit wis (14a)
AO=[ [mCiely ¢ —ppaanas. (14b)

The equation of @, is obtained with the same way multiply-
ing by movv’. After some rearrangements, one gets

m
%) 3 dU _r@ '
+2(RY+ 3uP,.+ pu®) i =A (15)
where
RO= J’ mC2C(x, v)d (16a)
AO= [ [mC.Ciel(p v, (16b)

The equations for higher moments R® and R“ are also
obtained similarly. The additional moment equation exami-
ned in the present work is

% R +uR® — 3u’Py— 2pu’)

+3(R(P)+3qux+pu3)tf—£: = A® (17)

where
R= [mC.fts, s (182)
A= f f mCel(fy! f—fdQdnd (18b)

In order to simplify equations, following reduced quantities
are introduced.

RO=R®/[p'y*], AO=rA®/[p'(')*] (19a)
RO=RO/[ '], KO=2AP/[p'w')*] (19b)
R =R®/[ pi@iy], AD=rAP/[ pi(u')*] (19¢)

and x=x/A, where A is an appropriate length parameter
which one may put the mean free path of up-streaming mo-
lecules. The moment equations are rewritten in terms of
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reduced quantities as follows.

dP , 4R®

(1+B—4‘P)?+ = =A® (20a)

—[(BB-B)+2(1+BP-P2+20+ 2?‘?)]%’
d’R’(Q)
dx

+20 +B—ﬁ)‘f—g + =A@ (20b)

~

—[31+B—DPP+4R"] %
d’R’(P) N d’R’Uﬂ K‘”)

+(1+B-P) & Tt o (20¢)
For writing (20a-c), the quantities p, # and T are eliminated
using the relations (12a-c).

Singularity in the Thirteen Moment Equations

In the thirteen moment approximation, there are thirteen
variables in the general three dimensional case’ In one di-
mension which is the case of present study, there are only
five, namely p, », T, P, and @, with the notations used in
this paper. The distribution function is approximated by the
form

=1+ 4 0Bl —u)+ S0P -5 @

where
®u<2):%(mﬂem&~1 (22a)
9}3)=%(m/k37')3/201 (22b)
and
w. = m/kpT)V?C, (23a)
w?=(m/kgT)C2. (23b)

The use of (21) expresses the higher order moments in
terms of the five quantities, for example,

R=2q, 24a)

RO= (7P~ 2pksT/m)ksT/m. (24b)

Substituting the (24a, b) into the moment equations (13) and
(15), one obtains two differential equations for unknown P,
and Q.. With the notation of dimensionless quantities, they
are written in the form

Du"‘E +D12E :K(P) (25)
dpP aQg ~
DZ]W +D22§ :A(Q) (26)
where
Dy=1+B—4P (27a)
Dy=2 @27b)
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Dy = %3(3—3)—2(1 +BP+ 8?2—%? "]

~%7"[B(3—B)+?2—216]/(1 +B-P)

- %[B(s—B)Jr??—zb]Z/(l +B-Py @70)

D22:2(1+B—1§O}~’)
+S(BE-B)+P~20)/(1+B-P) @7d)

The equations (25, 26) have solutions only when
DDy —D1aDyy #0. (28)

In order to look for the condition that the (28) does not
hold, it is recommended to linearize the equations (25, 26)
near the up-streaming (x— — o), and the down-streaming (x
— 1) limits. From the (9a, b) and the (12a-c), ones see
that the limiting values of P and @ are

Px——o0)=B (29a)
P+ w)= %(3—3) (29h)
Qi+t w0)=0 (29¢)

and the collision integrals A” and A vanish at equilibrium.
Let us consider following expansions with an order parame-
ter ¢

P=PO4PV4... (30a)
Q=6QV+-.. (30b)

L GETy, LN (30c)
AQ=cX PO (30d)

where PO=B for the up-streaming and (3—B)/4 for the
down-streaming. The differential equations (25, 26) are linea-

rized by taking linear terms with respect to the parameter
€

joey on
DH(O) dg +D12(0) dg{ :AP(I) (313)
/P oV
D21(0) dg + DZZ(O) dg} =A Q(l) (31b)
where
Du(O) =1—-3B (323)
D=2 (32b)
Dy9=2B (32¢)
D,9=2(1—-B) (32d)
near the up-streaming flow, and
n9=2B-1) (33a)
0—6
D= 5 (33b)
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Figure 1. A shematic diagram of solutions of 13-moment equa-
tions in the phase space. The curve S represents a singular line
given by DyDy—DyDy =0, and the dotted curves are hypotheti-
cal loci of solution points.

DZI<°>:%(3+ 14B - 5B?) (33¢)

Dgg(o): 3B-1 (33d)

near the down-streaming flow. The linearized equations (31a,
b) do not have solutions when

DH(O)DZZ(O) _DIZ(O)DZI(O) =0Q. (34)

Inserting the (32a-d) and (33a-d) into the (34), ones obtain
the equations of B at which the linear differential equations
break down,

15B2—26B+5=0 (35a)
and
135B2—202B+31=0 (35b)

near the up-streaming and the down-streaming, respectively.
Let us remind that the B is related to the Mach number
by M=(5B/3)"? and 0.6>B>0. The acceptable solutions are
B=0.2203 (or M=16503 ) from (35a), and B=0.1736 (or
M=1.8591) from (35b). Therefore, the lowest Mach number
is 1.6503 for the linear equations to be unsolvable. This is
the same value which Grad obtained in 19527

The lowest Mach number obtained by the linear equations
is the limiting number for the original equations (25, 26)
to be unsolvable. That is, the equations (25, 26) have solu-
tions onlyv when the Mach number is less than the limiting
number 1.6503. This fact is illustrated schematically in the
Figure 1. The Figure shows the hypothetical loci of solutions
of (25, 26) in phase space with dotted curves for three cases
of M<M, (curve a), M=M, (curve b) and M>M, (curve
c) where M;=1.6503. The solid curve (curve S) represents
the singular line given by Dy Dy— DDz =0. When M=M,,
the phase point of up-streaming flow coincides with the sin-
gular line. For M>M,, the up-streaming phase point crosses
over the line, so that the phase points of up-streaming and
down-streaming are located at opposite sites over the singu-
lar line. Therefore, it is impossible to have a locus connecting
the two phase points without coinciding with the singular
line.

Singularity in the Twenty Moment Equations
In the twenty moment approximation, the higher order

moments ©® above the third order are truncated in the
infinite series of (1). The distribution function is expressed
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in terms of the first twenty moments in the general three-
dimensional case.’ In the present one-dimensional case, there
are six variables, namely p u, T, P, @, and R?. The (1)
is written in the form

f:f“”[ 1+ %@n(Z)(?)wa — wZ)

+ %91(3)(w,w2 —w>—2w,)
+1—12®m<3>(5w,3—3wxw2)] 36)
where

@m(S) — %(m /kBT)3/2 R(P) (37)

and the ©,? and 6,” are defined in the previous section.
Using the (36), one calculates the R® and R* as follows

RO=T(kpT/m)Py— 2ptksT/my’ (38a)
R =6(ksT/m)Pe,— 3p(ksT/m)’ (38b)
or
RO=7BTP— 2B T (39a)
= 6BTP — 3B%p 12 (39b)

Substituting (39a, b) into the moment equations (20a-c) with
the use of (12a-c), one obtains a set of differential equations
for P, @ and F® in the form

X(P)

E, 0 1 dP/dx
[Em E, 0 H dQ/dx ]: K“”} 40)
Es Es Ess AR /dx AW

where the matrix elements E;'s are defined by

En=1+B—4P (41a)
=4 B+ ape— 29 o
En=3BG3-B)—20+BP+8P~ Q-2
“%?[3(3—B)+'F2—25]/(1+B—’F)

- %[B(s _B)+ P~ 90 /(1+B— DY (41b)

_ _ 205
Em= 2(1 +B-2 P)
+ %[B(3—B)+?2 -201/4+B-P) (41¢)

E+=2B(3—B)—3(1+B)P+ 9P — 40— 4R®
- %F[B(s—B) TP QA +B-P
1

—3[3(3—B)+P'2—2’6]2/(1 +B—P) (41d)
Es= —4F+%[B(3—B)+?2—26]/(1 +B-P) (41e)
Ep,=1+B-P 419

The (40) has solutions only when the determinant of matrix
[E;] does not vanish.
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Figure 2. The singular surface given by D=0 in the 20-moment
case at B=0.2.

D=EnEpEs+EnEy— EpEn#0 (42)

The same procedure as the previous section can be applied
in this case. Since the limiting value of R® is

RO@—>+ 0)=0 43)

the differential equations in (40) are linearized near the up-
streaming and the down-streaming. The determinant D takes
the form

Dy=—-2(B—~1)3B*-6B+1) (44)
near the up-streaming, and

Df= %(SB —1)(29B*—46B +5) (45)

near the down-streaming. The acceptable solution are

B=0.1835 (or M=1.8082) (46)
for Dy'=0, and

B=0.1174 (or M=2.2609) (47a)

B=0.3333 (or M=1.3416). 47h)

for Dy =0. Therefore, the lowest Mach number for the linea-
rized equations to be unsolvable is 1.3416 which is the limit
of Mach number in this case.

It is not difficult to show that original equations in (40)
have solutions only when the Mach number is less than
the limiting number. To do this, ones need to draw a singu-
lar surface given by D=0 in the three dimensional phase
space and examine the behavior of phase points of up-strea-
ming and down-streaming flows. Figure 2 shows the surface
D=0 at B=0.2 plotted for 0<P<0.75, —0.4<Q<0.2, and —0.3
<R®<0, by using the Plot3D of Mathematica. Similar sha-
pes of surfaces are obtained for other values of B. In Figure
3, a contour curve (curve S) of the surface for ®’=0, and
some hypothetical loci of solution points of (40) for 1<M<]1.
3416 (curve a), 1.3416<M<1.8082 (curve b), 1.8082<M<2.
2609 (curve c), 2.2609<M<o (curve d) are shown. It is evi-
dent that the original equations have solutions only when
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Figure 3. A shematic diagram of solutions of 20-moment equa-
tions in the phase space. The curve S represents a contour line
of R"'=0 of the singular surface. The dotted curves are projec-
tions of hypothetical loci of solution points onto the (P, Q) plane
in the phase space.

1<M<1.3416 in which the locus of solutions does not coinci-
des with the singular surface.

Discussions

In the present work, we have re-examined the limiting
Mach number of Grad moment equations for stationary plane
shock-waves. The method employed in the analysis is the
linearization of equations near up-streaming and down-strea-
ming flows. For the case of thirteen moment, it is confirmed
that equations have solutions only when the Mach number
is less than 1.6503 which has already been known since 1952.
For twenty moment case, the limit of Mach number is
decreased to 1.3416. This result implies that the limit of
Mach number does not necessarily approach 1.851 as contra-
sted with the Holway’s note® As far as the convergence of
series expansion is concerned, it is difficult to conclude that
there exists an asymptotic limit of Mach number for the
infinite series to converge.

It is worthwhile to notice that the thirteen moment equa-
tions do not reproduce the Navier-Stokes equation at the
linear limit of up-streaming and down-streaming flows. The
Navier-Stokes equation does not show the mathematical sin-
gularity for arbitrary Mach number. Although the equation
do not predict experiments of strong shocks quantitatively,
it describes the physical behavior of gases in near equilib-
rium. If a theory predicts correctly the whole shock profile
from the up-streaming to the down-streaming, it should be
reduced to the Navier-Stokes theory at near equilibrium re-
gions. The discrepancy between the moment theory and the
Navier-Stokes theory at near-equilibrium regions does not
necessarily mean that the former is incorrect in the steep
shock region also. It remains to be studied further that the
thirteen moment equations can improve the prediction of
Navier-Stokes theory in the steep shock zone for strong
shock waves.?
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