Total Synthesis of Sodium (3S, 4R)-3-[2-(2-Aminothiazol-4-yl)-(Z)-2methoxviminoacetamido]-4-methoxvmethyl-2-azetidinone-1-sulfonate from D-Aspartic Acid

Bong Young Chung*, Jin Yeon Kim, Cha Soo Nah, Kee Jong Han, and Jong Ok Park

Department of Chemistry, Korea University, Seoul 136-701. Received January 27, 1992

Sodium (3S, 4R)-3-[2-(2-aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-methoxymethyl-2-azetidinone-1-sulfonate (2) was synthesized in fourteen steps from D-aspartic acid. Starting from D-aspartic acid, (3S, 4R)-3-amino-1-t-butyldimethylsilyl-4-methoxymethyl-2-azetidinone (12) was synthesized in ten steps. Acylation of the amino group of 12 with 2-amino-α-(methoxyimino)-4-thiazoleacetic acid, desilylation, sulfonation, and ion exchange afforded sodium (3S, 4R)-3-[2-(2-aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-methoxymethyl-2-azetidinone-1-sulfonate (2). This new β-lactam compound 2 showed low antibacterial activities.

Introduction

In the preceding paper, we have described the total synthesis of sodium (3R, 4S)-3-\[2-(2-aminothiazol-4-vl)-(Z)-2-methoxyiminoacetamido]-4-methoxymethyl-2-azetidinone-1-sulfonate (1), which is structurally related to aztreonam² and carumonam³. In this paper, we wish to report the total synthesis of its antipodal compound, sodium (3S, 4R)-3-[2-(2aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-methoxymethyl-2-azetidinone-1-sulfonate (2), from D-aspartic acid.

Results and Discussion

For the manipulation of the (3S, 4R)-configuration in the title compound 2, D-aspartic acid was chosen as the starting material. Dehydration of D-aspartic acid with PCl₃ afforded D-aspartic anhydride hydrochloride (3), which was transformed regioselectively into α-benzyl D-aspartate (4) with benzyl alcohol. N-Benzylation of the compound 4 with benzyl bromide produced α-benzyl N-benzyl-D-aspartate (5) in 70% yield. Cyclization of this β-amino acid 5 with O-ethyl phosphorodichloridate4 in CH3CN (0.01 M) at room temperature afforded (R)-1-benzyl-4-benzyloxycarbonyl-2-azetidinone (6) in 90% yield.

Reduction of the benzyloxycarbonyl group of the compound 6 with sodium borohydride and methylation of the resulting hydroxymethyl group with CH₃I in the presence of Ag₂O afforded (R)-1-benzyl-4-methoxymethyl-2-azetidinone (8) in 60% overall yield. Due to the reasons discussed in the preceding paper¹, the benzyl group of the compound 8 was removed with lithium in liquid ammonia and reprotected with t-butyldimethylsilyl group to give (R)-1-t-butyldimethylsilyl-4methoxymethyl-2-azetidinone (10) (see Secheme 1).

Introduction of the azido group at the 3-position of the compound 10 with LDA and tosyl azide afforded (3S, 4R)-3azido-1-t-butyldimethylsilyl-4-methoxymethyl-2-azetidinone (11) in 60% yield. The trans configuration between the C-

Scheme 2

3 and C-4 protons of the compound 11 was confirmed by the coupling constants of 3.0 Hz determined from its 2D-COSY NMR spectral data. The azido group of compound 11 was reduced by hydrogenation over 10% Pd/C and acylated with (Z)-2-(2-aminothiazol-4-yl)-2-methoxyiminoacetic acid in the presence of 1-methanesulfonyloxy-6-trifluoromethylbenzotriazole to produce (3S, 4R)-3-[2-(2-aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido \rac{1}{-1-t}-butyldimethylsilyl-4methoxymethyl-2-azetidinone (13) in 60% yield. Desilylation of 13 with tetra-n-butylammonium fluoride, N-sulfonation with sulfur trioxide-pyridine complex and ion exchange with Dowex-50W (Na+ form) afforded the title compound, sodium (3S, 4R)-3-[2-(2-aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-methoxymethyl-2-azetidinone-1-sulfonate (2), in 66% yield (see Scheme 2).

The *in vitro* antibacterial activities of the title compound **2** were also tested against 20 representative strains, but its MIC values were quite high compared to those of cefotaxime.

Experimental

General comments and synthetic procedures of the L-series of the following compounds are described precisely in the preceding paper.¹

- **D-Aspartic anhydride hydrochloride (3)** was prepared from D-aspartic acid as white solid (85% yield): mp. 142-144°C; IR (KBr) 1820, 1790 cm $^{-1}$; 1 H-NMR (DMSO-d₆) δ 2. 33-3.10 (m, 2H), 3.80-4.37 (m, 1H), 7.90-9.00 (brd, 2H).
- α-**Benzyl D-aspartate (4)** was prepared as white solid from compound 3 and benzyl alcohol (75% yield): mp. 174°C (lit.⁵ 175-176°C); $[α]_D^{26}+0.30°$ (c 0.85, 1 N NaOH); IR (KBr) 3400-2400, 1740 cm⁻¹; ¹H-NMR (TFA-d) δ 3.37 (d, J=4.5 Hz, 2H), 4.60 (t J=4 Hz, 1H), 5.20, 5.40 (ABq, J=12 Hz, 2H), 7.30 (s, 5H).
- α-Benzyl N-benzyl-D-aspartate (5) was prepared from compound 4, benzyl bromide and triethylamine as colourless solid (70% yield): mp. 127-129°C; $[α]_D^{26}+30.8$ ° (c 0.27, CH₃ CN); IR (KBr) 1720 cm⁻¹; 1 H-NMR (TFA-d) δ 3.36 (d, J=5 Hz, 2H), 4.34 (t, J=5 Hz, 1H), 4.40 (s, 2H), 5.47, 5.63 (ABq, J=12 Hz, 2H), 7.23 (s, 5H), 7.26 (s, 5H).
- (R)-1-Benzyl-4-benzyloxycarbonyl-2-azetidinone (6) was prepared as colorless oil by cyclizing compound 5 with O-ethyl phosphorodichloridate in acetonitrile (90% yield): $[\alpha]_D^{26} + 33.7^{\circ}$ (c 0.71, CHCl₃); IR (CHCl₃) 1760 cm⁻¹; ¹H-NMR (CDCl₃) δ 2.90-3.07 (m, 2H), 3.78 (t, J=4 Hz, 1H), 3.90, 4.75 (ABq, J=14 Hz, 2H), 5.03 (s, 2H), 7.16 (s, 5H), 7.26 (s, 5H).
- (R)-1-Benzyl-4-hydroxymethyl-2-azetidinone (7) was obtained as white solid from azetidinone 6 (80% yield): mp. 83-85°C; $[\alpha]_D{}^{26}-33.5°$ (c 2.15, CH₂Cl₂); IR (CHCl₃) 3350, 1740 cm⁻¹; ¹H-NMR (CDCl₃) δ 2.70 (d, J=2 Hz, 2H), 3.43-3.82 (brd, 3H), 3.72 (s, 1H), 4.09, 4.58 (ABq, J=14 Hz, 2H), 7.25 (s, 5H).
- (R)-1-Benzyl-4-methoxymethyl-2-azetidinone (8) was prepared as yellowish oil by methylation of compound 7 with methyl iodide in the presence of silver oxide (75% yield): $[\alpha]_D^{25}-24.0^\circ$ (c 1.41, CHCl₃); IR (CHCl₃) 1750 cm⁻¹; ¹H-NMR (CDCl₃) 8 2.60-2.80 (m, 2H), 3.03 (s, 3H), 3.20 (brd s, 2H), 3.30-3.67 (m, 1H), 4.33, 4.73 (ABq, J=14 Hz, 2H), 7.03 (s, 5H).
- (R)-4-Methoxymethyl-2-azetidinone (9) was prepared as colourless oil by debenzylation of the compound 8 with lithium in liquid ammonia (75% yield): $[\alpha]_D^{25} 7.4^{\circ}$ (c 0.26, CHCl₃); IR (CHCl₃) 3370, 1760 cm⁻¹; ¹H-NMR (CDCl₃) δ 2.66-3.01 (m, 2H), 3.35 (s, 3H), 3.52 (brd s, 2H), 3.41-4.02 (m, 1H), 7.15-7.53 (brd, 1H).
- (R)-1-t-Butyldimethylsilyl-4-methoxymethyl-2-azeti-dinone (10) was prepared as colourless oil from compound 9 (quantitative yield): $[\alpha]_D^{25}-16.0^{\circ}$ (c 1.14, CHCl₃); IR (CHCl₃) 1775 cm⁻¹; ¹H-NMR (CDCl₃) δ 0.30 (s, 6H), 1.00 (s, 9H), 2.88, 3.06 (dd, J=3 Hz, 5 Hz, 2H), 3.40 (s, 3H), 3.53 (brd s, 2H), 3.40-3.90 (m, 1H).
- (3S, 4R)-3-Azido-1-t-butyldimethylsilyl-4-methoxymethyl-2-azetidinone (11) was prepared as an oil from compound 10, LDA and tosyl azide (60% yield): $\left[\alpha\right]_D^{27}$ 60.6°

- (c 0.35, CHCl₃); IR (CHCl₃) 2250, 1788 cm⁻¹, 1 H-NMR (CDCl₃) 8 0.22 (s, 3H), 0.23 (s, 3H), 0.97 (s, 9H), 3.38 (s, 3H), 3.43-3.58 (m, 2H), 3.63-3.80 (m, 1H), 4.43 (d, J=3 Hz, 1H).
- (3S, 4R)-3-Amino-1-t-butyldimethylsilyl-4-methoxymethyl-2-azetidinone (12) was obtained as an oil from compound 11 by hydrogenation over 10% Pd/C: $[\alpha]_D^{27}$ -37.9° (c 0.29, CHCl₃); IR (CHCl₃) 3380, 1755 cm⁻¹; ¹H-NMR (CDCl₃) δ 0.23 (s, 6H), 0.93 (s, 9H), 2.10 (s, 2H), 3.34 (s, 3H), 3.49 (brd s, 2H), 3.80-4.05 (m, 1H), 4.55-4.80 (brd, 1H).
- (3S, 4R)-3-[2-(2-Aminothiazol-4-yl)-(Z)-2-methoxy-iminoacetamido]-1-*t*-butyldimethylsilyl-4-methoxy-methyl-2-azetidinone (13) was prepared as yellowish solid from azetidinone 12 and 2-amino-α-(methoxyimino)-4-thiazol-eacetic acid in the presence of FMS (71% yield): mp. 45-47°C; $[α]_D^{25}-16.7^\circ$ (c 4.87, CH₃OH); IR (CH₂Cl₂) 3455, 3325, 1755, 1680 cm⁻¹; ¹H-NMR (CDCl₃ and DMSO-d₆) δ 0.23 (s, 6H), 1.02 (s, 9H), 3.35 (s, 3H), 3.67 (brd s, 2H), 3.90 (s, 3H), 3.91-4.33 (brd, 1H), 4.80-5.10 (brd, 1H), 6.83 (s, 1H), 8.70-8.90 (brd, 1H).
- (3S, 4R)-3-[2-(2-Aminothiazol-4-yl)-(Z)-2-methoxy-iminoacetamido]-4-methoxymethyl-2-azetidinone (14) was prepared as white solid from compound 13 by desilylation with tetrabutylammonium fluoride (83% yield): mp. 125-127°C; $[\alpha]_D^{25}$ -37.6° (c 0.03, CH₃OH); IR (KBr) 3430, 3300, 1782, 1698 cm⁻¹; ¹H-NMR (DMSO-d₆) δ 3.45 (s, 3H), 3.51 (brd s, 2H), 3.55-3.85 (brd, 1H), 3.92 (s, 3H), 4.55-4.85 (brd, 1H), 6.93 (s, 1H), 9.10-9.31 (brd, 1H).
- Sodium (3S, 4R)-3-[2-(2-aminothiazol-4-yl)-(Z)-2-methoxyiminoacetamido]-4-methoxymethyl-2-azetidinone-1-sulfonate (2) was prepared as solid from compound 14 by N-sulfornation with sulfur trioxide-pyridine complex followed by ion exchange with Dowex-50W (Na⁺ form) (80% yield): IR (KBr) 3440, 3320, 1775, 1705 cm⁻¹; 1 H-NMR (DMSO -d₆ and TFA-d) δ 3.58 (s, 3H), 3.73 (brd s, 2H), 3.88 (s, 3H), 3.95-4.15 (brd, 1H), 4.55 (dd, J=3 Hz, 2 Hz, 1H), 6.93 (s, 1H), 9.15-9.40 (brd, 1H).

Antibacterial Activities of the compounds **2** were also tested as described in the preceding paper¹ but the MIC values were very high.

Acknowledgement. The financial supports from the Korea Science and Engineering Foundation and the Organic Chemistry Research Center sponsored by KOSEF, and the measurement of the *in vitro* biological activities by the Korea Research Institute of Chemical Technology are gratefully acknowledged.

References

- B. Y. Chung, C. S. Nah, J. Y. Kim, H. Rhee, and Y. C. Cha, Bull. Korean Chem. Soc., 13, 311 (1992).
- 2. R. B. Sykes, D. P. Bonner, K. Bush, and N. H. Georgopa-padakou, *Antimicrob. Agents Chemother.*, 21, 85 (1982).
- S. Kishimoto, M. Sendai, S. Hashiguchi, M. Tomimoto, Y. Satoh, T. Matsuo, M. Kondo, and M. Ochiai, *J. Antibiot.*, 36, 1421 (1983).
- B. Y. Chung, C. W. Kim, S. Kim, J. M. Lee, and J. Namkung, *Tetrahedron Lett.*, 31, 2905 (1990).
- J. Kovacs, H. N. Kovacs, and R. Ballina, J. Am. Chem. Soc., 85, 1839 (1963).