Supporting Information

Conformations and Vibrational Frequencies of a Precursor of Benzovesamicol Analogues Studied by Density Functional Theories

Jong-Kil Park and Sang Joon Choe ${ }^{\dagger}$,*
Department of Environmental Engineering, Atmospheric Environment Information Research Center, Inje University, Kimhae 621-749, Korea
†Department of Chemistry, Institute of Basic Science, Inje University, Kimhae 621-749, Korea. ${ }^{*}$ E-mail: chemcsj@inje.ac.kr Received October 4, 2013, Accepted April 17, 2014

Table S1. Comparison of root-mean-square deviation (RMSD in \AA) between calculated coordinates in gas phase and experiment ${ }^{a}$ using different DFT methods at 6-31G(d) basis set for (2RS,3RS)-(I)

M06-2X	B3LYP	LSDA	B3PW91	PBEPBE	B3P86
2.7793	2.7923	2.7777	2.7854	2.7958	2.7849

${ }^{a}$ experiment: ref. 9 (powder x-ray)

Table S2. Comparison of root-mean-square deviation (RMSD in \AA) between calculated coordinates and experiment ${ }^{a}$ using various basis sets for (2RS,3RS)-(I) at LSDA level theory

$6-31 \mathrm{G}(\mathrm{d})$	$6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$	$6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$	$6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$	cc-PVTZ	TZVP
2.7777	2.7819	2.7850	2.7853	2.7819	2.7822

${ }^{a}$ experiment: ref. 9

Table S3. Molecular Dihedral Angles, and Total Energies of (2RS,3RS)-(I) and (2RS,3RS)-(II) Optimized at the LSDA/6-31G(d)//HF/631G(d) Levels in Gas Phase and Water Solution

Conformers (Gas Phase)	Diheral Angles		Total Energies ${ }^{a}$ (E, hartree)	Conformers (Water)	Dihedral Angles		Total Energy ${ }^{a}$ (E, hartree)
	Ψ_{1}	Ψ_{2}			Ψ_{1}	Ψ_{2}	
(2RS,3RS)-(I)				(2RS,3RS)-(I)			
AIg	4	-162	-1011.07502683	AIs	-18	-163	-1011.10061081
BIg	-174	-161	-1011.07502380	BIs	40	-160	-1011.10041814
CIg	-168	-168	-1011.07451734	CIs	136	-166	-1011.10019340
DIg	156	-156	-1011.07440201				
(2RS,3RS)-(II)				(2RS,3RS)-(II)			
AIIg	6	-156	-1011.07509615	AIIs	11	-166	-1011.10017823
BIIg	-40	-160	-1011.07506485	BIIs	167	-167	-1011.10016484
CIIg	155	-155	-1011.07454298	CIIs	4	-154	-1011.09941041

[^0]Table S4. Comparison of mean absolute deviation (MAD in cm^{-1}) between calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and experimental values $\left(\mathrm{cm}^{-1}\right)$ using different DFT methods at $6-31 \mathrm{G}(\mathrm{d})$ basis set for (2RS,3RS)-(I)

M06-2X	B3LYP	LSDA	B3PW91	PBEPBE	B3P86
193.1^{a}	133.8^{a}	80.4^{a}	133.1^{a}	75.6^{a}	138.6^{a}
7.38^{b}	5.11^{b}	3.08^{b}	5.09^{b}	2.89^{b}	5.30^{b}

${ }^{\text {a }}$ It is mean absolute deviation(MAD) between calculated vibrational frequency and experimental value in normal frequencies.
Mean absolute deviations of normal frequencies $\times 100=\%$
bMean normal frequencies of experimental value

Table S5. Comparison of mean absolute deviation (MAD in cm^{-1}) between calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ and experimental values $\left(\mathrm{cm}^{-1}\right)$ using various basis sets for (2RS,3RS)-(I) at PBEPBE level

$6-31 \mathrm{G}(\mathrm{d})$	$6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$	$6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$	$6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$	cc-PVTZ	TZVP
75.6^{a}	51.7^{a}	50.7^{a}	50.6^{a}	45.9^{a}	122.6^{a}
2.89^{b}	1.98^{b}	1.93^{b}	1.93^{b}	1.59^{b}	4.69^{b}

${ }^{a}$ It is mean absolute deviation(MAD) between calculated vibrational frequency and experimental value in normal frequencies.
$\frac{\text { Mean absolute deviations of normal frequencies }}{\text { bMean normal frequencies of experimental value }} \times 100=\%$

Figure S1. Preferred conformational structures AIIg, BIIg, and CIIg of (2RS,3RS)-(II) at LSDA/6-31G(d) level in gas phase. Hydrogen bonds are represented by dashed line. The distance of hydrogen bond for AIIg is $1.91 \AA$. The BIg and CIIg are $1.92 \AA$.

Figure S3. Calculated IR spectrum using different methods, including M06-2X, B3LYP, and LSDA at $6-31 \mathrm{G}(\mathrm{d})$ basis set for (2RS, 3RS)-(I).

Figure S4. Calculated IR spectrum using different methods, including B3PW91, PBEPBE, and B3P86 at $6-31 \mathrm{G}(\mathrm{d})$ basis set for (2RS,3RS)-(I).

Figure S5. Calculated IR spectrum using various basis sets, including $6-31+G(d, p), 6-311+G(d, p), 6-311++G(d, p)$, and ccPVTZ for (2RS,3RS)-(I) by PBEPBE method.

(2RS, 3RS)-(I) in Water Solution
(2RS, 3RS)-(II) in Gaseous Phase

(2RS, 3RS)-(II) in Water Solution
Figure S6. Calculated IR spectrum of gaseous and water solution for (2RS, 3RS)-(I) and (2RS, 3RS)-(II) by PBEPBE method.

[^0]: ${ }^{a}$ Total energies in atomic units

