Supporting Information

Two New Chemical Constituents from Leaves of Perilla frutescens var. acuta

Kyeong Wan Woo, ${ }^{\text {a }}$ Ji Young Han, ${ }^{\text {a }}$ Won Se Suh, Jei Hyun Lee, ${ }^{\dagger}$ and Kang Ro Lee ${ }^{*}$
Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea. "E-mail: krlee@skku.edu
${ }^{\dagger}$ Department of Korean Medicine, Dongguk University, Gyeongju-si, Gyeongbuk 780-714, Korea
Received February 6, 2014, Accepted March 3, 2014

Extraction and Isolation

The dried leaves of P. frutescens Britton var. acuta Kudo $(25 \mathrm{~kg})$ were extracted with petroleum ether, and methanol, successively and evaporated under reduced pressure to give residues (264 g and 2 kg , respectively). The MeOH extracts $(1 \mathrm{~kg})$ were suspended in distilled water $(2.4 \mathrm{~L})$ and then successively partitioned with n-hexane, $\mathrm{CHCl}_{3}, \mathrm{EtOAc}$, and hydrated n - $\mathrm{BuOH}, 190 \mathrm{~g}, 144 \mathrm{~g}, 60 \mathrm{~g}$, and 95 g , respectively.

The Petroleum ether fraction (120 g) was separated on a silica gel ($70-230$ mesh, 1 Kg), eluting with a gradient solvent system of Hexane/EtOAc (1:0 to 1:1) to yield three crude fractions (Fr. PA - PC). Fr. PA (4.2 g) was separated on a silica gel, eluting with solvent system of Hexane/EtOAc (40:1) to yield five fractions (PA1 - PA5). Subfraction PA4 (180 mg) was separated over an RP-C 18 silica gel, eluting with solvent system $90 \% \mathrm{MeOH}$ and purified by semipreparative reversed-phase HPLC, using a solvent system of $90 \% \mathrm{MeOH}$ to obtain $32(40 \mathrm{mg})$ and 33 (2 mg). Fr. PB (37 g) was subfractionated with a silica gel column with Hexane$\operatorname{EtOAc}(1: 0-1: 1)$ as the eluent to give seven fractions (PB1 - PB7). Subfraction PB5 fraction (8.7 g) was separated by silica gel column chromatography using a solvent system of Hexane-EtOAc (30:1-1:1) as the eluent to yield five fractions (PB51 - PB55). The PB53 fraction (1.0 g) was also subjected to a RP-C ${ }_{18}$ silica gel column with $100 \% \mathrm{MeCN}$ and purified by preparative normal-phase HPLC with solvent system of Hexane-EtOAc (20:1) to yield $23(20 \mathrm{mg})$, $24(360 \mathrm{mg}), 25(167 \mathrm{mg}), 29(6 \mathrm{mg}), \mathbf{3 1}(3 \mathrm{mg})$ and $35(24$ $\mathrm{mg})$. Fr. PC (32 g) was separated on a silica gel, eluting with solvent system of Hexane/EtOAc (40:1) to yield five fractions (PC1 - PC5). Subfraction PC2 (10.4 g) was separated over an RP-C ${ }_{18}$ silica gel, eluting with a gradient solvent system of 80 to $100 \% \mathrm{MeOH}$, to afford ten subfractions (PC21 - PC210). Subfraction PC21 (218 mg) was seperated on a silica gel, eluting with gradient solvent system of Hexane/EtOAc (30:1) and purified with silica gel prep. HPLC (Hexane/ EtOAc = 40:1) to obtain $34(16 \mathrm{mg})$. Subfraction PC22 $(778 \mathrm{mg})$ was separated on a silica gel, eluting with a gradient solvent system of Hexane/EtOAc (30:1) and purified with silica gel prep. HPLC $($ Hexane $/ \mathrm{EtOAc}=40: 1)$

[^0]to obtain $26(5 \mathrm{mg})$ and $27(200 \mathrm{mg})$.
The CHCl_{3} soluble fraction (25 g) was separated on a silica gel (70-230 mesh, 1 Kg), eluting with a gradient solvent system of $\mathrm{CHCl}_{3} / \mathrm{MeOH}(40: 1$ to $1: 1)$ to yield seven crude fractions (Fr. CA - CG). Fr. CB $(9.0 \mathrm{~g})$ was separated over an RP-C ${ }_{18}$ silica gel (230-400 mesh, 300 g), eluting with a gradient solvent system of 80 to $100 \% \mathrm{MeOH}$, to afford four subfractions (CB1 - CB4). Subfraction CB2 (1.4 g) was was separated on a silica gel, eluting with solvent system of $\mathrm{CHCl}_{3} / \mathrm{MeOH}(40: 1)$ and purified with $\mathrm{RP}-\mathrm{C}_{18}$ silica gel prep. HPLC $50 \% \mathrm{MeOH}$ to yield compound 28 (13 $\mathrm{mg})$ and $\mathbf{3 0}(4 \mathrm{mg})$. Subfraction CB3 $(2.5 \mathrm{~g})$ was separated on a silica gel, eluting with solvent system of $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (40:1) and purified with RP-C 18 silica gel prep. HPLC (60% $\mathrm{MeOH})$ to yield $21(5 \mathrm{mg})$.

The EtOAc soluble fraction (33 g) was separated on a silica gel ($70-230$ mesh, 1 Kg), eluting with a gradient solvent system of $\mathrm{CHCl}_{3} / \mathrm{MeOH}(40: 1$ to $1: 1)$ to yield seven crude fractions (Fr. EA - EG). Fr. EB (2.6 g) was separated over an RP-C C_{18} silica gel (230-400 mesh, 300 g), eluting with gradient solvent system of 30 to $100 \% \mathrm{MeOH}$, to afford fifteen subfractions (EB1 - EB15). Subfration EB3 (16 mg) and EB7 $(100 \mathrm{mg})$ were purified with $\mathrm{RP}-\mathrm{C}_{18}$ silica gel prep. HPLC $(40 \% \mathrm{MeOH})$ to yield compound $8(3 \mathrm{mg})$ and $9(26$ $\mathrm{mg})$. Subfraction EB10 (120 mg) was chromatographed on LiChroprep Lobar ${ }^{\circledR}$ - A Silca gel column $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=\right.$ 40:1) and further purified by semi-preparative reversedphase HPLC, using a solvent system of $50 \% \mathrm{MeOH}$ to obtain $16(10 \mathrm{mg})$. Fr. EC (2.5 g) was separated over an RPC_{18} silica gel (230-400 mesh, 300 g), eluting with a gradient solvent system of 30 to $100 \% \mathrm{MeOH}$, to afford ten subfractions (EC1 - EC10). Subfraction EC1 (400 mg) was separated over a silica gel column with a solvent system of $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($35: 1$ to $1: 1$) and further purified by semipreparative reversed-phase HPLC, using a solvent system of $50 \% \mathrm{MeOH}$ to obtain $10(6 \mathrm{mg})$ and $17(2 \mathrm{mg})$. Subfraction EC2 (220 mg) was chromatographed on Sephadex LH-20 ($80 \% \mathrm{MeOH}$) and purified with RP-C C_{18} silica gel prep. HPLC ($40 \% \mathrm{MeOH}$) to yield 22 (9 mg). Subfraction EC4 (150 mg) was chromatographed on Sephadex LH-20 (80% MeOH) and purified with $\mathrm{RP}-\mathrm{C}_{18}$ silica gel prep. HPLC ($55 \% \mathrm{MeOH}$) to yield compound $1(7 \mathrm{mg})$ and $2(25 \mathrm{mg})$. Fr. ED (4.5 g) was separated over an RP-C 18 silica gel (230-400
mesh, 300 g), eluting with a gradient solvent system of 40 to $100 \% \mathrm{MeOH}$, to afford nine subfractions (ED1 - ED9). Subfration ED8 (30 mg) was purified with RP-C 18 silica gel prep. HPLC $(70 \% \mathrm{MeOH})$ to yield compound $20(5 \mathrm{mg})$. Fr. EE (14.7 g) was separated over an RP-C C_{18} silica gel (230400 mesh, 400 g), eluting with a gradient solvent system of 50 to $100 \% \mathrm{MeOH}$, to afford ten fractions (EE1 - EE10). Fraction EE1 (7.9 g) was separated over a silica gel column with a solvent system of $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($30: 1$ to $1: 1$) to yield eight subfractions (EE11 - EE18). Subfraction EE14 (27 mg) was purified with RP-C C_{18} silica gel prep. HPLC (30% $\mathrm{MeOH})$ to yield compound 18 (4 mg). Subfraction EE15 (750 mg) was separated over an RP-C C_{18} silica gel (50 to $100 \% \mathrm{MeOH}$) to yield two subfractions (EE151 - EE152). Subfraction EE151 (320 mg) was chromatographed on Sephadex LH-20 $(80 \% \mathrm{MeOH})$ and further purified with RP-C ${ }_{18}$ silica gel prep. HPLC ($25 \% \mathrm{MeOH}$) to yield compound $5(25 \mathrm{mg}), 13(1.5 \mathrm{mg})$, and $\mathbf{1 5}(80 \mathrm{mg})$. Subfraction EE155 (400 mg) was purified with RP-C ${ }_{18}$ silica gel prep. HPLC ($60 \% \mathrm{MeOH}$) to yield compound 4 (245 $\mathrm{mg})$. Subfraction EE18 (4.2 g) was chromatographed on Sephadex LH-20 (80\% MeOH) four subfractions (EE181 EE184). Subfraction EE181 (390 mg) was separated over an RP- C_{18} silica gel (230-400 mesh, 150 g), eluting with a
gradient solvent system of 30 to $100 \% \mathrm{MeOH}$, and purified with silica gel prep. $\mathrm{HPLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=15: 1\right)$ to obtain $6(4 \mathrm{mg}), \mathbf{1 2}(25 \mathrm{mg})$, and $19(5 \mathrm{mg})$. Subfraction EE182 (250 mg) was separated over an RP-C 18 silica gel (230-400 mesh, 100 g), eluting with gradient solvent system of 30% MeOH , and purified with $\mathrm{RP}-\mathrm{C}_{18}$ silica gel prep. HPLC $(50 \% \mathrm{MeOH})$ to afford $\mathbf{1 1}(3 \mathrm{mg})$. Subfraction EE184 (3.2 g) was separated over an RP-C ${ }_{18}$ silica gel (230-400 mesh, 100 g), eluting with a gradient solvent system of $30 \% \mathrm{MeOH}$, to yield three subfractions (EE1841 - EE1843). Subfraction EE1842 (2.9 g) was purified with RP-C C_{18} silica gel prep. HPLC ($30 \% \mathrm{MeCN}$) to afford $3(1.2 \mathrm{~g})$.

The BuOH soluble fraction (21 g) was separated over an RP-C C_{18} silica gel (230-400 mesh, 500 g), eluting with a gradient solvent system of 50 to $100 \% \mathrm{MeOH}$, to yield four crude fractions (Fr. BA - BD). Fr. BA (16.0 g) was subfractionated with a silica gel column with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}$ (5:1:0 to $1: 1: 0.3$) as the eluent to give five fractions (BA1 - BA5). Subfraction BA4 (3g) was separated over an RP-C C_{18} silica gel (230-400 mesh, 100 g), eluting with a gradient solvent system of 30 to $100 \% \mathrm{MeOH}$ and purified with RP-C ${ }_{18}$ silica gel prep. HPLC $(45 \% \mathrm{MeOH})$ to afford 7 (25 mg), $\mathbf{1 4}$ (12 mg), and $\mathbf{3 6}$ (13 mg).

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$).

Fig. $\mathbf{S 2}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}\left(175 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$.

Fig. S3 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}$.

Fig. S4 HSQC spectrum of $\mathbf{1}$.

Fig. $\mathbf{5} 5 \mathrm{HMBC}$ spectrum of $\mathbf{1}$.

Fig. S6 HR FAB MS spectra of $\mathbf{1}$.

Fig. $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 6}\left(700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$.

Fig. S8 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 6}\left(175 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$.

Fig. $\mathbf{S 9}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3 6}$.

Fig. $\mathbf{S 1 0}$ HSQC spectrum of $\mathbf{3 6}$.

Fig. S11 HMBC spectrum of $\mathbf{3 6}$.

Fig. S12 HR FAB MS spectra of $\mathbf{3 6}$.

[^0]: ${ }^{\text {a }}$ These authors contributed equally to this work.

