Supplementary information

Synthesis of New 4-(*tert*-Octyl)phenol Derivatives and Their Anticancer Activity against Human Prostate and Lung Cancer Cell Lines

Haiyan Che, Yuanying Fang, Santosh K. Gurung, Jun Luo, Deok Hyo Yoon,[†] Gi-Ho Sung,[‡] Tae Woong Kim,[†] and Haeil Park^{*}

College of Pharmacy, [†]College of Natural Science (Biochemistry), Kangwon National University, Chunchon 200-701, Korea ^{*}E-mail: haeilp@kangwon.ac.kr

> [‡]*Rural Development Administration, Suwon 441-707, Korea Received September 23, 2013, Accepted March 17, 2014*

Materials and Methods for Active Compound 7

Analysis of Structure of 7. ¹H-NMR spectra were recorded on a Bruker Avance 300 (300 MHz) and Bruker DPX 400 (400 MHz). Chemical shifts are reported in ppm downfield relative to tetramethylsilane as an internal standard. ¹³C-NMR spectra were recorded on a Bruker DPX 400 (100 MHz). Melting points were recorded on a Fisher-Johns microscopic scale melting point apparatus.

Preparation of Compound 7. Militarin analog MA-1 was prepared from _D-mannitol following the procedure and conditions as described in the followings: Hydroxyl groups of D-mannitol were fully protected by benzyl groups. Selective debenzylation–acetylation of benzyl protecting groups on the primary alcohols using $ZnCl_2$ –Ac₂O–HOAc, followed by deacetylation with K₂CO₃ in MeOH gave 2, 3, 4, 5-tetra-*O*-benzyl-D-mannitol. Tosylation of the intermediate with TsCl and DMAP in pyridine followed by reaction with 4-(*tert*-octyl)phenol, K₂CO₃ and KI in CH₃CN at reflux conditions and debenzylation with Pd/C-HCOOH gave militarin analog MA-1.

(2*R*,3*R*,4*R*,5*R*)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy)hexane-2,3,4,5-tetraol (7). Colorless oil; ¹H-NMR (400 MHz, CDCl₃): δ 7.27-7.29 (d, 4H, *J* = 8.8 Hz, Ph), 6.84-6.86 (d, 4H, *J* = 8.8 Hz, Ph), 4.23-4.26 (dd, 2H, *J* = 8.8 Hz, 3.1 Hz, H, H), 4.11-4.19 (m, 4H, *J* = 8.8 Hz, 6.2 Hz, H, H, H₂, H₅), 4.04-4.07 (t, 2H, *J* = 5.8 Hz, H₃, H₄), 3.01-3.02 (d, 2H, 2xOH), 2.83 (s, 2H, 2xOH), 1.71 (s, 4H, 2x-CH₂-), 1.34 (s, 12H, 4xMe), 0.71 (s, 18H, 6xMe); ¹³C-NMR (100 MHz, CDCl₃) : δ 155.9 (C₁-Ph), 143.1 (C₄-Ph), 127.2 (C₃-Ph, C₅-Ph), 113.8 (C₂-Ph, C₆-Ph), 71.3 (C₃, C₄), 70.6 (C₂, C₅), 69.2 (C₁, C₆), 56.9 (<u>C</u>H₂-octyl), 38.00 (<u>C</u>-Me₂), 32.3 (<u>C</u>-Me₃), 31.8 (Me₃), 31.7 (Me₂).

