Supporting Information

Synthesis of Flavokawain Analogues and their Anti-neoplastic Effects on Drug-resistant Cancer Cells Through Hsp90 Inhibition

Young Ho Seo* and Sun You Park ${ }^{\dagger}$
College of Pharmacy, Keimyung University, Daegu 704-701, Korea. ${ }^{*}$ E-mail: seoyho@kmu.ac.kr
${ }^{\dagger}$ Department of Chemistry, Keimyung University, Daegu 704-701, Korea
Received November 13, 2013, Accepted December 26, 2013

General Information of Synthesis

Unless otherwise noted, all reactions were performed under an argon atmosphere in oven-dried glassware. All purchased materials were used without further purification. Thin layer chromatography (TLC) was carried out using Merck silica gel $60 \mathrm{~F}_{254}$ plates. TLC plates were visualized using a combination of UV, p-anisaldehyde, ceric ammonium molybdate, ninhydrin, and potassium permanganate staining. NMR spectra were obtained on a Bruker $400(400 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}$; 100 MHz for ${ }^{13} \mathrm{C}$) spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in parts per million (ppm) relative to TMS, with the residual solvent peak used as an internal reference. Signals are reported as m (multiplet), s (singlet), d (doublet), t (triplet), q (quartet), bs (broad singlet), bd (broad doublet), dd (doublet of doublets), dt (doublet of triplets), or dq (doublet of quartets); the coupling constants are reported in hertz (Hz). Final products were purified by MPLC (Biotage Isolera One instrument) on a silica column (Biotage SNAP HP-Sil). On the basis of NMR and analytical HPLC data (Shimadzu prominence, VP-ODS C18 column), purity for all the tested compounds was found to be $>95 \%$.

Compound 1b
35% yield. $R_{f}=0.29$ (3:7 ethyl acetate: hexane). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone) $\delta 7.91$ (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.80 (d, $J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.16(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) 4.04$ (s, 3H), 3.91 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 193.3$, 166.6, 166.3, 162.9, 144.4, 131.7, 129.2, 124.8, 117.1, 107.3, 94.9, 92.1, 57.2, 56.07. ESI MS $(\mathrm{m} / \mathrm{e})=301[\mathrm{M}+1]^{+}$.

Compound 1c
58% yield. $R_{f}=0.28$ ($2: 8$ ethyl acetate: hexane). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.41(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.9$, 168.7, 166.3, 162.8, 161.7, 142.8, 130.4, 128.6, 125.4, $114.7,106.6,94.1,91.5,56.1,55.9,55.7$. ESI MS $(\mathrm{m} / \mathrm{e})=$ $315[\mathrm{M}+1]^{+}$.

Compound 1d

21% yield. $R_{f}=0.14$ (2:8 ethyl acetate: hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.41(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (dd, $J=8.2 \mathrm{~Hz}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}$, 3H), 3.93 (s, 3H), 3.91 (s, 3H), 3.83 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.8,168.7,166.4,162.7,151.4,149.5$, $143.0,128.9,125.8,123.0,111.5,110.8,106.7,94.2,91.6$, 56.3, 56.2, 56.1, 55.9. ESI MS $(\mathrm{m} / \mathrm{e})=345[\mathrm{M}+1]^{+}$.

Compound 1e
69% yield. $R_{f}=0.17$ (1:9 ethyl acetate: hexane). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.39(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.11-7.07 (m, 2H), 6.83 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (d, $J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.8, 168.7, 166.4, 162.7, 149.9, 148.6, 142.7, 130.3, $125.8,125.4,108.9,106.9,106.6,101.9,94.1,91.5,56.2$, 55.9. ESI MS $(\mathrm{m} / \mathrm{e})=329[\mathrm{M}+1]^{+}$.

Compound 1f
23.32% yield. $\mathrm{R}_{\mathrm{f}}=0.18$ (2:8 ethyl acetate: hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.32(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}), 6.11(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.7,168.8,166.5,162.7,153.7,142.8,140.4,131.5$, 127.3, 106.6, 105.9, 94.2, 91.7, 61.4, 56.5, 56.2, 56.0. ESI $\mathrm{MS}(\mathrm{m} / \mathrm{e})=375[\mathrm{M}+1]^{+}$.

Compound 1 g

20% yield. $R_{f}=0.24$ (2:8 ethyl acetate: hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.25(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.08$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.4,168.8,166.4,162.7$, $152.3,150.5,145.2,138.4,129.6,129.5,122.7,106.5$, 106.2, $94.1,91.6,61.6,61.4,56.4,56.1,55.9$. ESI MS (m/e) $=409[\mathrm{M}+1]^{+}$.

Compound 1h

15% yield. $R_{f}=0.16$ (2:8 ethyl acetate: hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.24(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 192.4,168.8,166.7,162.7,153.0,151.5,145.0$, 141.0, 131.4, 129.8, 113.7, 106.7, 106.6, 94.2, 91.6, 61.7, 61.3, 56.4, 56.1, 55.9. ESI MS (m/e) $=455[\mathrm{M}+1]^{+}$.

Compound 1i

32% yield. $R_{f}=0.27$ (1:9 ethyl acetate: hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.40(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.90-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.49(\mathrm{~m}$, $3 \mathrm{H}), 6.13(\mathrm{~d}, J=2.0,1 \mathrm{H}), 5.96(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.8$, 168.7, 166.6, 162.8, 139.3, 134.0, 133.2, 132.0, 130.6, 130.4, 129.0, 127.0, 126.4, 125.7, 125.4, 123.9, 106.6, 94.1, 91.5, 57.4, 56.1. ESI MS $(\mathrm{m} / \mathrm{e})=335[\mathrm{M}+1]^{+}$.

Compound $\mathbf{1 j}$

70% yield. $R_{f}=0.21$ (1:9 ethyl acetate: hexane). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.40(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{t}, J=6.8 \mathrm{~Hz}, J=$ $5.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.88-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 3 \mathrm{H}), 6.12(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , Acetone) δ 193.4, 169.3, 167.7, $163.9,143.2,135.3,134.6,134.1,131.4,129.7,129.6$, 128.7, 128.2, 127.7, 124.8, 107.0, 94.8, 92.0, 56.7, 56.2. ESI $\mathrm{MS}(\mathrm{m} / \mathrm{e})=335[\mathrm{M}+1]^{+}$.

