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The shape invariant potentials are proved to be exactly solvable, i.e. the wave functions and energies of a

particle moving under the influence of the shape invariant potentials can be algebraically determined without

any approximations. It is well known that the SWKB quantization is exact for all shape invariant potentials

though the SWKB quantization itself is approximate. This mystery has not been mathematically resolved yet

and may not be solved in a concrete fashion even in the future. Therefore, in the present work, to understand

(not prove) the mystery an attempt of deriving exactly solvable potentials directly from the SWKB quantization

has been made. And it turns out that all the derived potentials are shape invariant. It implicitly explains why the

SWKB quantization is exact for all known shape invariant potentials. Though any new potential has not been

found in this study, this brute-force derivation of potentials helps one understand the characteristics of shape

invariant potentials.
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Introduction

In quantum mechanics it is important to find exactly

solvable potentials and understand their characteristics.1 Of

course, up to today not all exactly solvable potentials have

been found. An interesting class of solvable potentials is a

set of potentials so called “shape invariant potentials (SIP).”

All shape invariant potentials are proved to be exactly solv-

able.2,3 Of course there are other exactly solvable potentials

that are not shape invariant, for example, Ginocchio potential.4

There are two types of SIP. One is the shape invariant

potentials by translation (TSIP) and the other is the shape

invariant potentials by scaling (CSIP). There are no CSIPs

with closed form found yet but many TSIPs with closed

form have been found. All TSIPs known, up to today, are

listed in Table 1.3,5

Another side of understanding quantum mechanics is to

investigate the so called “quantization”. As well known, in

early days of quantum mechanics “Bohr quantization condi-

tion” or “Sommerfeld quantization condition” played a key

role in development of quantum physics.6 The exact quanti-

zation rule (or condition) for nonrelativistic one-dimensional

quantum system has been found rather recently.7-12

The one-dimensional nonrelativistic Schrödinger equation

for a bound state is

(1)

where m is the mass of the particle and  is the Planck

constant divided by 2π. n is the quantum number or a
number of node in wave function . V(x) is a potential

energy function. En is the energy for state n. In this work for

convenience the ground state energy is set to be zero, i.e.

E0= 0. Without losing generality a proper scaling of coordi-

nate yields a simpler form of Schrödinger equation, i.e.

.  (2)

Let  be the classical momentum func-

tion for an energy En, then the exact quantization rule is

(3)

with

.  (4)

x1,n and x2,n are two classical turning points (x1,n < x2,n), i.e.

V(x1,n) = V(x2,n) = En
, and φn(x) = (dΨn(x)/dx)/Ψn(x) is the log

derivative of wave function Ψn(x).

For one-dimensional quantum system, the most well known

and widely applied quantization is the WKB (Wentzel,

Kramers, Brillouin) quantization.13,14 It is an approximate

quantization but has been widely used to study many one-

dimensional quantum systems. The WKB quantization is

.  (5)

The WKB quantization has been modified to yield the so

called supersymmetric WKB (SWKB) quantization that is

more accurate than the WKB quantization,3,15,16 i.e.

.  (6)

where W(x) is the well known superpotential, i.e.
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(7)

and  . 

The WKB quantization is exact for Harmonic oscillator

potential and Morse potential for which the correction term

in Eq. (4) turns out to be always 1/2 for any state n.17 The

SWKB quantization is known to be exact for all known

TSIPs listed in Table 1, of course including Harmonic

oscillator and Morse potentials.18 Furthermore the correction

term in Eq. (4) is known to be constant (independent of n),

i.e. for TSIPs,

.  (8)

 is the derivative of the momentum func-

tion for the ground state (n = 0), and  is

the derivative of superpotential defined in Eq. (7).

A question of interest is “why does the SWKB quanti-

zation (6) yield the exact energies En for all TSIPs?” We

have examined this puzzling question for a long time but

failed in providing an algebraically self consistent answer to

the question. To our knowledge, as a matter of fact, no one

else has ever succeeded in mathematically proving the fact −
“The SWKB quantization is exact for all TSIPs.” Recalling

that even the exact quantization rule (3) cannot be algebrai-

cally derived solely from the Schrödinger Eq. (2), it may be

no wonder why no algebraic proof has been presented.

In the current work we suggest an alternative way of

understanding, if not proving, the exactness of SWKB quanti-

zation for TSIPs. It can be achieved by finding potentials

satisfying both the exact quantization (3) and the SWKB

quantization (6) simultaneously and exactly. Of course there

are no general ways of determining the integrand from

integral form of equation like the quantization expressions

given above. But under certain conditions, we find that it is

possible to derive a rather general form of potentials from

the above integral form of quantization. Our aim is double

fold, i.e. i) if all TSIPs are recovered, it will definitely

confirm that the SWKB quantization is indeed exact for all

TSIPs and ii) if any potential other than the known TSIPs is

found, it will be a great achievement because it will give an

insight on understanding the physical meaning of the SWKB

quantization. Furthermore if the new potential found is

shape invariant, it will break the long-believed-notion that

all TSIPs have already been found.

In the next section, how to derive an exactly solvable

potential from the SWKB quantization is explained by

taking a simple example. All the derived potentials are listed

in the following section. The findings and limits of the current

study are also presented in the same section. Conclusion is

provided in the final section.

Derivation of Exactly Solvable Potential from SWKB 

Quantization

The main purpose of this work is to find exactly solvable

potentials satisfying the exact quantization (3) and the SWKB

quantization (6) simultaneously. There are certain constraints

(or conditions) implicitly embedded in the both quantizations.

i) The quantizations should be used for a smoothly varying

potential function that has one well. In another words the

quantizations are valid for potentials that have only two

classical turning points. ii) The correction term γ (En) should

be independent of n in order to determine a potential V(x)

simultaneously satisfying the both quantizations (3) and (6).
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Ψ0 x( )
-------------------------

W
2
x1 n,′( ) = W2

x2 n,′( ) = En

γ γ≡ En( ) = γ E0( ) = 1+
1
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x
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x
2 0,

∫
W x( )p0′ x( )
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--------------------------dx
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W′ x( ) = dW x( )/dx

Table 1. All known shape invariant potentials by translation
(TSIPs). The energies (En) are defined in Eq. (2) with E0 = 0. The
constants A, B, b, α, ω, l are all taken ≥ 0. Unless otherwise stated,
the range of potentials is − ∞ ≤ x ≤ ∞, 0 ≤ r ≤ ∞. Table 4.1 in Ref. 3
is reconstructed here for the purpose of discussion
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If the correction term depends on n, there is no way of deter-

mining the potential algebraically. See Eq. (8). Consequently

the derived potential must meet the conditions i) and ii).

For a potential V(x) whose ground (lowest) bound state

energy is zero, i.e. E0 = 0, the following relationship from

supersymmetry algebra always holds3 (with Eq. (2))

.  (9)

If we find a superpotential W(x) satisfying both the exact

quantization (3) with (8) and the SWKB quantization (6)

simultaneously, the potential V(x) will be determined through

Eq. (9). Unfortunately there is no general way of finding all

W(x). Furthermore for many forms of W(x), the definite

integral in (3) or (6) cannot be evaluated. Therefore we have

designed an alternative way that is very practical though it

might not be complete.

Firstly a transformation of the variable x into a new vari-

able y using  is performed. Then the exact

quantization is

(10)

where . The SWKB quantization is

(11)

where . And the relationship (9)

between a potential and its superpotential is now

.  (12)

Secondly let us guess the forms (mathematical expres-

sions) for W(y) and g(y). Then the potential V(y) is naturally

determined from Eq. (12). With V(y) and g(y) one can

evaluate the energies En using the exact quantization (10). At

the same time with W(y) and g(y) one can also evaluate the

energies En using the SWKB quantization (11). If the two En

are equal to each other, it ensures that the potential V(y) is

exactly solvable and the SWKB quantization is exact for

V(y). In order to make the two En simultaneously satisfy (10)

and (11), there should exist some conditions (or relationships

among parameters) which must be determined. Finally a

back transformation of y to x gives a potential V(x) for which

the SWKB quantization is exact.

For example, let 

 (13)

and

.  (14)

Then, from Eq. (12), the form of the potential V(y) must be

 (15)

where

.  (16)

From Eq. (16) one obtains the following relationship, i.e.

(17)

and

.  (18)

First let us determine the energies En using the exact

quantization (10). The L.H.S. of (10) is

L.H.S. = 

 (19)

where

, ,

c = a1, and d = a0. Obviously a < b is satisfied. 

The above definite integral (19) can be evaluated by using

the formulas,

(20)

when a < b, ac + d < 0, and bc + d < 0 or

(21)

when a < b, ac + d > 0, and bc + d > 0. Based on the already

known integral formulas in Refs. 8 and 19, the above

formulas (20) and (21) are derived by us.

When ac + d < 0 and bc + d < 0, using Eq. (20),

Then the exact quantization (10) is
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aid of Eq. (17),
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.

(22)

When ac + d > 0 and bc + d > 0, instead of Eq. (20) the

formula (21) should be used. But the resulting energy

expression is the same as (22).

Now let us determine the energies En using the SWKB

quantization (11). The L.H.S. of (11) is, when τ1 > 0,

 

 (23)

where

, c = a1, and d = a0.

Obviously a < b is satisfied.

When ac + d < 0 and bc + d < 0, using Eq. (20),

Then the SWKB quantization (11) is

Solving it for En, one obtains energies with the aid of Eq.

(17),

(24)

When ac + d > 0 and bc + d > 0, the resulting energy expres-

sion is again the same as Eq. (24).

Comparing the SWKB En (24) with the exact En (22), one

immediately finds that the two expressions are identical

when γ = 1/2. It verifies that the potential V(y) = σ2y
2 + σ1y +

σ0 (15) (with Eqs. (13), (14) and (16)) satisfies the exact

quantization (10) and the SWKB quantization (11) simul-

taneously. Consequently we have successfully found an

exactly solvable potential from the SWKB quantization. 

Integration of g(y) given in Eq. (14) yields

y = C exp(a1x) − (a0/a1)  (25)

where C is an arbitrary constant. Therefore the potential V(x)

is

V(x) = σ2[C exp(a1x) − a0/a1]2 + σ1[C exp(a1x) − a0/a1] + σ0

  = σ2C
2 exp(2a1x) + (σ1 − 2σ2a0/a1)C exp(a1x)

+ σ0 − σ1a0/a1 +σ2(a0/a1)
2. (26)

Redefining parameters as

, and α = −a1,

one obtains with the aid of Eq. (16)

V(x) = B2 exp(−2αx) − 2B(A + α/2)exp(−αx) + A2,  (27)

En = A
2 − (A − nα)2.  (28)

Therefore, in this example, one has successfully derived a

potential (27) for which the SWKB quantization is exact. It

turns out that the potential (27) is none other than Morse

potential (See Table 1). Of course, the same procedure can

be utilized for other choices of W(y) and g(y).

All Exactly Solvable Potentials from SWKB 

Quantization

In the previous section an example showing how to derive

an exactly solvable potential from the SWKB quantization is

presented. With the choice (or guess) of W(y) = τ1y + τ0 and

g(y) = a1y + a0, we have obtained a potential of V(y) = σ2y
2 +

σ1y + σ0. There may be other forms of W(y) and g(y) that

may yield the same V(y). For example, the same V(y) = σ2y
2

+ σ1y + σ0 form can be obtained from the choice of W(y) =

τ1y + τ0 and g(y) = a2y
2 + σ1y + a0. This choice must pro-

duce a different potential. Therefore one has to make all

possible choices of W(y) and g(y) to derive all the potentials

satisfying the quantizations.

The systematic choice was made as follows. Recall that

V(y) and W2(y) must have one well with two turning points

(condition i) in the previous section). 

[1] The simplest choice for V(y) is obviously a form of

quadratic function, i.e. V(y) = σ2y
2 + σ1y + σ0 (σ2 > 0) for

( ). The simplest choice for W2(y) is also a

quadratic function so that W(y) is a linear function, i.e. W(y)

= τ1y + τ0. Then Eq. (12) gives the following equation 

σ2y
2 + σ1y + σ0 = (τ1y + τ0)

2 − τ1g(y).  (29)

So that there are three possible forms for g(y) to satisfy Eq.

(29), i.e. g(y) = a0, g(y) = a1y + a0 or g(y) = a2y
2 + a1y + a0.

In summary there are three possible choices for a potential

whose form is V(y) = σ2y
2 + σ1y + σ0. 

(I) The first choice is V(y) = σ2y
2 + σ1y + σ0, W(y) = τ1y + τ0,

and g(y) = a0. For this choice, following the procedure

discussed in the previous section, one finds that the potential

V(x) turns out to be Harmonic oscillator potential.

(II) The second choice is V(y) = σ2y
2 + σ1y + σ0, W(y) =

τ1y + τ0, and g(y) = a1y + a0. This is the case discussed in the

previous section as an example. As already shown in Eq.

(27), the potential V(x) is Morse potential.

 For the third choice of V(y) = σ2y
2 + σ1y + σ0, W(y) = τ1y

+ τ0, and  g(y) = a2y
2 + a1y + a0, depending on parameters a2,

a1 and a0, four possible forms of V(x) are derived, i.e. 

(III) when , V(x) is Coulomb potential,

(IV) when , V(x) is Rosen-Morse I potential,

(V) when  and (2a2y + a1)
2 < − 4a2a0, V(x)

En=
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is Rosen-Morse II potential, and

(VI) when  and (2a2y + a1)
2 > − 4a2a0,

V(x) is Eckart potential.

[2] Besides a quadratic function there could be another

form of potential that has one well with two turning points,

i.e. V(y) = σ2y
2 + σ0 + σ

−2y
−2 (σ2 > 0, σ

−2 > 0, σ0 < 0) for

( ). Then the simple choice for W(y) is W(y) = τ1y

+ τ
−1y

−1 . The Eq. (12) yields g(y) = a0 or g(y)

= a2y
2 + a0 . In summary there are two possible

choices when V(y) = σ2y
2 + σ0 + σ

−2y
−2 is assumed.

(VII) The first choice is V(y) = σ2y
2 + σ0 + σ

−2y
−2, W(y) = τ1y

+ τ
−1y

−1, and g(y) = a0. For this choice, one finds that the

potential V(x) turns out to be 3-D Harmonic oscillator potential.

For the second choice of V(y) = σ2y
2 + σ0 + σ

−2y
−2, W(y) =

τ1y + τ
−1y

−1, and g(y) = a2y
2 + a0, depending on parameters

a2 and a0, three possible forms of V(x) are derived, i.e. 

(VIII) when a2a0 > 0, V(x) is Scarf I potential, 

(IX) when a2a0 < 0 and (2a2y)
2 < −4a2a0, V(x) is Scarf II

potential, and

(X) when a2a0 < 0 and (2a2y)
2 > −4a2a0, V(x) is Generalized

Pöschl-Teller potential.

The derived 10 (I through X) potentials for which the

SWKB quantization is exact are summarized in Table 2.

Comparing with Table 1, one finds that the derived 10

potentials are exactly the same (neither one less nor one

more) as the known ten TSIPs in Table 1. It indeed verifies

the fact that the SWKB quantization is exact for all known

TSIPs.

[3] An immediate question arising is if there are any other

exactly solvable potential forms that might be derived from

the SWKB quantization. Of course there could be a lot more.

In the choices of (I) through (VI) the potential was V(y) =

σ2y
2 + σ1y + σ0 and the superpotential was W(y) = τ1y + τ0.

When V(y) = σ2y
2 + σ1y + σ0 is chosen, another possible

form of W(y) is W(y) = τ1y + τ
−1y

−1. Then there are three

possible forms for g(y), i.e. g(y) = −τ
−1, g(y) = a2y

2−τ
−1, and

g(y) = a2y
2.

(XI) The first choice is V(y) = σ2y
2 + σ1y + σ0, W(y) = τ1y +

τ
−1y

−1, and g(y) = −τ
−1. For this choice, V(x) turns out to be

3D-Harmonic oscillator potential with one less number of

parameters. The number of parameters is 5 (σ2, σ1, σ0, τ1, τ−1)

while there are 6 parameters (σ2, σ1, σ0, τ1, τ−1, a0) in the

case (VII) that produces the same 3D-Harmonic oscillator

potential. Therefore it has one less number of parameters. 

The second choice is V(y) = σ2y
2 + σ1y + σ0, W(y) = τ1y +

τ
−1y

−1, and g(y) = a2y
2−τ

−1. This choice yields three forms of

g(y) depending on the sign of a2τ−1. 

(XII) When a2τ−1 < 0, V(x) is Scarf I potential with one less

number of parameters. 

(XIII) When a2τ−1 > 0 and (2a2y)
2 > 4a2τ−1, V(x) is Gene-

ralized Pöschl-Teller potential with one less number of

parameters. 

(XIV) When a2τ−1 > 0 and (2a2y)
2 < 4a2τ−1, V(x) is Scarf II

potential with one less number of parameters. 

(XV) The third choice is V(y) = σ2y
2 + σ0 + σ

−2y
−2, W(y) =

τ1y + τ
−1y

−1, and g(y) = a2y
2. For this choice V(x) is 3-D

Harmonic oscillator with one less number of parameters. 

The choices of (XI) through (XV) yielded 5 more potentials

but they all belong to known TSIPs. No new potentials are

found.

[4] Besides V(y) = σ2y
2 + σ1y + σ0 (σ2 > 0) and V(y) =

σ2y
2 + σ0 + σ

−2y
−2, there might be another forms of V(y) that

has one well with two turning points. We have considered

two more possible forms as follows.

(XVI) When V(y) = σmy
m + σ0 + σ

−my
−m, W(y) = τmy

m/2 +

τ
−my

−m/2, and g(y) = amy
m/2+1 (m = 3, 4, 5,...), V(x) is 3-D

Harmonic oscillator potential. It is simply the generalization

of the case (XV). 

(XVII) When V(y) = σ1|y |+σ0, W(y) = τ1|y |
1/2, and g(y) =

a0|y |
1/2, V(x) is Harmonic oscillator potential with one less

number of parameters. 

(XVIII) When V(y) = σ1|y |+σ0, W(y) = τ1|y |
1/2, and g(y) =

a2|y |
3/2 + a0|y |

1/2 with a2a0 > 0, is Rosen-Morse I potential

with one less number of parameters. 

(XIX) When V(y) = σ1|y |+σ0, W(y) = τ1|y |
1/2, and g(y) =

a2|y|
3/2 + a0|y|

1/2 with a2a0 < 0, V(x) is Rosen-Morse II potential

with one less number of parameters. 

Again the potentials derived are none other than known

TSIPs. In summary the choices of (XI) through (XIX) did

not yield any new potentials.

[5] Finally more possible forms satisfying the two con-

straints (i) and (ii) (presented in the previous section) and

Eq. (12) are chosen and examined. They are

(XX) V(y) = σ2y
2 + σ0 + σ

−2y
−2, W(y) = τ0y + τ

−1y
−1, g(y) =

a4y
4 + a3y

3 + a2y
2 − 2τ0y − τ−1;

(XXI) V(y) = σ2y
2 + σ0 + σ

−2y
−2, W(y) = τ1y, g(y) = a0 + a−2y

−2

(or g(y) = a2y
2 + a0 + a−2y

−2); 

(XXII) V(y) = σ2y
2 + σ0 + σ

−2y
−2, W(y) = τ

−1y
−1, g(y) = a4y

4

+ a2y
2 + a0; 

(XXIII) V(y) = σ2y
2 + σ0 + σ

−2y
−2, W(y) = τ1y + τ0, g(y) = 2μ0y

+ a0 + a−2y
−2 (or g(y) = 2μ0y + a2y

2 + a0 + a−2y
−2); 

a1
2 − 4a2a0 > 0 a1

2

0 y ∞≤ ≤
τ1 0≠ , τ 1– 0≠( )

a2 0≠( )

Table 2. Exactly solvable potentials V(x) derived from the SWKB
quantization (6). V(y) and W(y) are, respectively, a potential and a
superpotential in y with g(y) ≡ dy/dx

 Choices of W(y) and g(y) Potential V(x) 

[1] V(y)=σ2y
2+σ1y+σ0 (σ2 > 0) (− ∞ ≤ y ≤ ∞)

  W(y)=τ1y +τ0 (τ1 ≠ 0)
 g(y)=a0 (a0 ≠ 0) Harmonic oscillator

 g(y)=a1y+a0 (a1 ≠ 0) Morse

 g(y)=a2y2+a1y+a0 (a2 ≠ 0)
   −4a2a0 = 0 Coulomb

   −4a2a0 < 0 Rosen-Morse I 

   −4a2a0 > 0 & (2a2y + a1)2 < −4a2a0 Rosen-Morse II

   −4a2a0 > 0 & (2a2y + a1)2 > −4a2a0 Eckart
[2] V(y)=σ2y

2+σ0+σ−2y
−2 (σ2 > 0, σ−2 > 0, σ0 < 0) (0 ≤ y ≤ ∞)

  W(y)=τ1y +τ−1y
−1 (τ1 ≠ 0, τ−1 ≠ 0)

 g(y)=a0 (a0 ≠ 0) 3-D Harmonic 

oscillator g(y)=a2y2+a0 (a2 ≠ 0)
a2a0 > 0 Scarf I

a2a0 < 0 & (2a2y)
2 < −4a2a0 Scarf II

a2a0 < 0 & (2a2y)
2 > −4a2a0 Generalized Pöschl-

Teller

a1
2

a1
2

a1
2

a1
2

a1
2

a1
2
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(XXIV) V(y) = σ2y
2 + σ0 + σ

−2y
−2, W(y) = τ0 + τ−1y

−1, g(y) =

−2μ0y + a4y
4 + a0 (or g(y) = −2μ0y + a4y

4 + a2y
2 + a0). 

The choices of (XX) through (XXIV) did not yield any

potential function satisfying both the exact and SWKB

quantizations. It is probably due to the form of 

which cannot be integrated.

Does the above derivation ([1] through [5]) exhaust all

possible forms of V(y) or W(y)? It is believed that the answer

to the question is “yes”. Cooper et al.5 who first derived

TSIPs listed in Table 1 actually guessed the forms of poten-

tials within the constraints of shape invariance in a similar

way utilized in this work. Since their pioneering work, no

one has found any other TSIP. Therefore it is sure that the

SWKB quantization is exact for all known TSIPs and there

are not any other potentials exactly satisfying the SWKB

quantization. What we have shown here is that the validity

of the SWKB quantization is a sufficient condition for TSIPs

but may not be a necessary condition.

Conclusion

From the SWKB quantization we have derived exactly

solvable potentials. Another words we have succeeded in

deriving potentials for which the SWKB quantization is

exact. The derived potentials turn out to be identical with all

known shape invariance potentials by translation. No other

potentials are found. It explains (though not proves) why the

SWKB quantization is exact for all known shape invariant

potentials by translation.

Have we derived all exactly solvable potentials for which

the SWKB quantization is exact? The answer to the question

is perhaps “yes”. Of course there are other exactly solvable

potentials, for example Ginocchio potential, for which the

SWKB quantization is not exact at all. Ginocchio potential is

not shape invariant and the correction term γ(En) in Eq. (8) is

not a constant (n-dependent). It implies that the n-depen-

dency of γ(En) has something to do with the validity of the

SWKB quantization. Since the correction term has a quan-

tum nature that does not appear in classical systems, it casts

a new understanding on quantum mechanics – quantum

systems are known to be quantized but the pattern (or the

way of appearance) of quantization is critical in deciding the

exact solubility of the quantum systems.

Finally we would like to add a short but significant obser-

vation on shape invariant potentials. The potentials in Table

1 have been known to form a class called TSIP. But as shown

in Table 2, the TSIPs can be further classified into two

subclasses. The one subclass (Harmonic oscillator, Morse,

Coulomb, Rosen-Morse I, Rosen-Morse II, Eckart) has a

transformed form of V(y) = σ2y
2 + σ1y + σ0 and the other

subclass (3-D Harmonic oscillator, Scarf I, Scarf II,

Generalized Pöschl-Teller) has a form of V(y) = σ2y
2 + σ0 +

σ
−2y

−2.
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