Supporting Information

A Series of Transition-metal Coordination Complexes Assembled from 3-Nitrophthalic Acid and Thiabendazole: Synthesis, Structure and Properties

Wen-Jia Xu, Qi-Jun Xue, Peng Liang, Ling-Yu Zhang, Yan-Feng Huang, and Yu Feng

College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, P.R. China *E-mail: fengyu19871212@126.com [†]College of pharmacy, Liaoning University, Shenyang 110036, P.R. China Received September 3, 2013, Accepted October 28, 2013

Table S1 Experimental data for complexes

Identification code	1	2	3	4
Empiricalf formula	$C_{36}H_{26}Cd_{2}N_{8}O_{16}S_{2} \\$	$C_{36}H_{18}N_8O_{12}S_2Zn_2\\$	$C_{18}H_{11}N_4O_8SZn_2 \\$	$C_{36}H_{22}Co_{2}N_{8}O_{14}S_{2} \\$
Formula weight	1115.57	949.44	574.11	972.60
Temperature(k)	296(2)	296(2)	296(2)	296(2)
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic
Sspace group	P-1	P-1	P-1	P2(1)/c
a (Å)	8.142 (2)	7.668(3)	7.954(2)	7.5577(9)
b (Å)	10.755(2)	9.585(3)	10.975(3)	14.561 (2)
c (Å)	12.302(3)	12.538(4)	11.537(3)	16.154(2)
Volume (ų)	1006.6(4)	898.4(5)	978.0(4)	1771.2(4)
Z	1	1	2	2
Absorption coefficient	1 245	1 521	2.619	1 142
(mm ⁻¹)	1.245	1.531	2.019	1.143
Theta range for data	1.70 to 25.00	1.63 to 25.00	1.78 to 25.00	1.89 to 25.00
collection	1.70 to 25.00	1.63 to 25.00	1.78 to 25.00	1.89 to 25.00
Reflections collected	5504	4763	5276	9338
Data/restraints/	2501 / 0 / 200	2112 / 6 / 271	2401 / 0 / 200	2106 / 0 / 200
parameters	3501 / 0 / 289	3112 / 6 / 271	3401 / 0 / 298	3106 / 0 / 280
Goodness-of-fit on F^2	1.136	1.130	1.115	1.050
Final R1 and wR2	R1 = 0.0278, wR2	R1 = 0.0300, $wR2 =$	R1 = 0.0372, wR2	R1 = 0.0314, wR2 =
$[I > 2\sigma(I)]$	= 0.0714	0.0837	= 0.1138	0.0871
R1 and wR2 indices (all	R1 = 0.0314, wR2	R1 = 0.0328, wR2 =	R1 = 0.0446, wR2	R1 = 0.0332, wR2 =
data)	= 0.0782	0.0855	= 0.1243	0.0885

A Series of Transition-metal Coordination Complexes Table S2 Selected bond lengths (Å) and angles (°) for complexes					
Complex 1					
Cd(1)-O(2)	2.261(2)	Cd(1)-N(3)	2.270(3)		
Cd(1)-O(7)	2.325(3)	Cd(1)-N(2)	2.359(3)		
Cd(1)-O(4)#1	2.372(3)	Cd(1)-O(3)#1	2.468(3)		
O(3)-Cd(1)#1	2.468(3)	O(4)-Cd(1)#1	2.372(2)		
O(2)-Cd(1)-N(3)	120.3(2)	O(2)-Cd(1)-O(7)	80.75(9)		
N(3)-Cd(1)-O(7)	98.9(2)	O(2)-Cd(1)-N(2)	100.3(2)		
N(3)-Cd(1)-N(2)	73.2 (2)	O(7)-Cd(1)-N(2)	171.5(2)		
O(2)-Cd(1)-O(4)#1	138.72(9)	N(3)-Cd(1)-O(4)#1	100.0(2)		
O(7)-Cd(1)-O(4)#1	84.57(9)	N(2)-Cd(1)-O(4)#1	99.8(2)		
O(2)-Cd(1)-O(3)#1	94.47(8)	N(3)-Cd(1)-O(3)#1	139.10(9)		
O(7)-Cd(1)-O(3)#1	108.03(9)	N(2)-Cd(1)-O(3)#1	80.38(9)		
O(4)#1-Cd(1)-	54.23(8)				
O(3)#1					
Complex 2					
Zn(1)-O(2)	1.985(2)	Zn(1)-O(5)#1	1.991(2)		
Zn(1)-N(1)	2.044(2)	Zn(1)-N(3)	2.150(2)		
Zn(1)-O(5)	2.196(2)	O(5)-Zn(1)#1	1.991(2)		
O(2)-Zn(1)-O(5)#1	103.11(9)	O(2)-Zn(1)-N(1)	97.83(9)		
O(5)#1-Zn(1)-N(1)	122.09(9)	O(2)-Zn(1)-N(3)	150.62(9)		
O(5)#1-Zn(1)-N(3)	103.27(9)	N(1)-Zn(1)-N(3)	78.75(9)		
O(2)-Zn(1)-O(5)	84.26(9)	O(5)#1-Zn(1)-O(5)	77.14(8)		
N(1)-Zn(1)-O(5)	159.07(9)	N(3)-Zn(1)-O(5)	89.20(9)		

Complex 3

Zn(1)-O(4)

Zn(1)-N(2)#2

Zn(2)-O(7)

Zn(2)-N(4)

O(1)-Zn(2)#1

N(2)-Zn(1)#2

O(7)-Zn(1)-O(2)#1

O(7)-Zn(1)-N(2)#2

O(2)#1-Zn(1)-

O(8)-Zn(2)-N(3)

O(8)-Zn(2)-N(4)

N(2)#2

1.961(3)

1.989(3)

1.981(3)

2.117(4)

2.251(3)

1.989(3)

105.6(2)

115.9(2)

108.4(2)

106.3(2)

123.4(2)

1.924(3)

1.984(3)

1.956(3)

2.063(3)

2.251(3)

1.984(3)

112.8 (2)

105.6 (2)

107.9(2)

110.5(2)

100.2(2)

Zn(1)-O(7)

Zn(2)-O(8)

Zn(2)-N(3)

Zn(2)-O(1)#1

O(2)-Zn(1)#1

O(7)-Zn(1)-O(4)

O(4)-Zn(1)-O(2)#1

O(4)-Zn(1)-N(2)#2

O(8)-Zn(2)-O(7)

O(7)-Zn(2)-N(3)

Zn(1)-O(2)#1

		Soc. 2012 , Vol. 33, N /10.5012/bkcs.2012.33				
O(7)-Zn(2)-N(4)	124.3 (2)	N(3)-Zn(2)-N(4)	78.4(2)			
O(8)-Zn(2)-O(1)#1	82.7 (2)	O(7)-Zn(2)-O(1)#1	88.0(2)			
N(3)-Zn(2)-O(1)#1	164.5(2)	N(4)-Zn(2)-O(1)#1	86.1(2)			
Complex 4						
O(7)-Co(1)#1	2.381 (2)	O(6)-Co(1)#2	2.099(2)			
O(1)-Co(1)	2.095(2)	Co(1)-O(5)	2.075(2)			
Co(1)-N(4)	2.095(2)	Co(1)-O(6)#2	2.099(2)			
Co(1)-N(3)	2.149(2)	Co(1)-O(7)#3	2.382(2)			
O(5)-Co(1)-N(4)	100.32(7)	O(5)-Co(1)-O(1)	94.03(6)			
N(4)-Co(1)-O(1)	165.53(7)	O(5)-Co(1)-O(6)#2	88.42(6)			
N(4)-Co(1)-O(6)#2	92.19(6)	O(1)-Co(1)-O(6)#2	90.04(6)			
O(5)-Co(1)-N(3)	98.17(6)	N(4)-Co(1)-N(3)	79.27(7)			
O(1)-Co(1)-N(3)	96.96(7)	O(6)#2-Co(1)-N(3)	170.00(7)			
O(5)-Co(1)-O(7)#3	174.56(6)	N(4)-Co(1)-O(7)#3	80.04(7)			
O(1)-Co(1)-O(7)#3	85.85(6)	O(6)#2-Co(1)-	86.14(6)			
		O(7)#3				
N(3)-Co(1)-O(7)#3	87.24(6)					

Table S3 Hydrogen-bond geometry (Å) and angles (°) for complexes					
D-H···A	D-H	$H \cdots A$	D···A	D-H···A	Symmetry codes
Complex 1					
O7-H7A···O8	0.85	1.93	2.741(4)	159	-x+1, -y+1, -z+1
07-Н7В…О3	0.85	1.93	2.740(4)	159	
O7-H7B···O2	0.85	2.49	2.971	117	
O8-H8A···O4	0.85	2.29	2.826(4)	121	-x, -y+1, -z+1
O8-H8B···O4	0.85	2.55	2.826(4)	100	
C10-H10···O1	0.93	2.39	3.223(5)	148	
Complex 2					
C7-H7···O1	0.93	2.48	3.296(4)	146	
C13-H13···O3	0.93	2.45	3.358(4)	164	
Complex 3					
O8-H8A···O3	0.85	1.83	2.678(5)	179	-x+2, -y+2, -z+1
O8-H8B···O4	0.85	1.89	2.736(4)	179	x+1, y, z
C3-H3···O1	0.93	2.42	2.746(6)	100	
C9-H9···O2	0.93	2.52	3.232(5)	134	
C17-H17···O6	0.93	2.53	3.141(6)	123	
C17-H17···O7	0.93	2.43	3.202(5)	140	
C18-H18···O5	0.93	2.38	3.113(6)	135	
Complex 4					
O1-H1B···O5	0.85	2.23	3.050	163	
O1-H1C···O6	0.85	2.48	2.966	117	-x, -y+2, -z
O1-H1C···O7	0.85	1.82	2.668	177	-x, -y+2, -z
C3-H3···O2	0.93	2.36	2.675(3)	100	
C17-H17···O3	0.93	2.40	2.997(3)	122	
C17-H17···O4	0.93	2.57	3.404(3)	149	
C18-H18···O5	0.93	2.36	3.275(3)	170	

Figure S1. Coordination modes of the 3-NPA $^{2-}$ anion, a in 1; b in 2; c in 3 and 4.

Figure S2. Infinite 2D networks of **2** connected by O-H···O hydrogen bonds and ð-ð stacking interactions. Unnecessary atoms are omitted for clarity.