Supplemental Data

4-Aminophthalazin-1(2H)-one Derivatives as Melanin Concentrating Hormone Receptor 1 (MCH-R1) Antagonists

Chae Jo Lim, ${ }^{\dagger, \dagger}$ Hye In Lee, ${ }^{\dagger, \dagger}$ Nakjeong Kim, ${ }^{\dagger}$ Byung Ho Lee, ${ }^{\dagger}$ Kwang-Seok Oh, ${ }^{\dagger}$ and Kyu Yang Yi ${ }^{\dagger, \ldots,,^{*}}$
${ }^{\dagger}$ Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 305-343, Korea
${ }^{\ddagger}$ Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Yuseong-gu,
Daejeon 305-350, Korea. ${ }^{*}$ E-mail: kyyi@krict.re.kr
Received August 26, 2013, Accepted September 9, 2013

Synthesis of compounds (3)

2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-(diethylamino)phthalazin-1(2H)-one (3a).

50 mg (yield 55\%) of the title compound was obtained by the same procedure for the compound $\mathbf{3 j}$, using $56 \mathrm{mg}(0.19$ mmol) of 2-(3-chloropropyl)-4-(diethylamino)phthalazin$1(2 H)$-one.
$R_{f}=0.56(10 \% \mathrm{MeOH}$ in MC$)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.42-8.44 (m, 1H), 7.91$7.94(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 2 H), 3.21-3.28 (m, 4H), 3.10 (d, $J=11.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.55 (t, J $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.14(\mathrm{~m}$, $4 \mathrm{H}), 1.80-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-(dipropylamino)phthalazin-1(2H)-one (3b).

41 mg (yield 47%) of the title compound was obtained by the same procedure for the compound $\mathbf{3 j}$, using $55 \mathrm{mg}(0.17$ mmol) of 2-(3-chloropropyl)-4-(dipropylamino)phthalazin$1(2 H)$-one.
$R_{f}=0.48(10 \% \mathrm{MeOH}$ in MC$) * 2$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41-8.44(\mathrm{~m}, 1 \mathrm{H}), 7.93-$ $7.96(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~s}$,
$1 \mathrm{H}), 7.22$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.16(\mathrm{~m}, 6 \mathrm{H}), 2.53(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.39-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.14(\mathrm{~m}, 4 \mathrm{H})$, $1.79-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 6 H).

2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-(diisobutylamino)phthalazin-1(2H)-one (3c).

99 mg (yield 65\%) of the title compound was obtained by the same procedure for the compound $\mathbf{3 j}$, using 100 mg (0.29 mmol) of 2-(3-chloropropyl)-4-(diisobutylamino)-phthalazin-1 $(2 \mathrm{H})$-one.
$R_{f}=0.35(10 \% \mathrm{MeOH}$ in MC$)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42-8.44(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32$ (s, 1H), 7.23 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.51(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.46(\mathrm{~m}, 1 \mathrm{H})$, $2.17(\mathrm{~s}, 3 \mathrm{H}), 1.93-2.13(\mathrm{~m}, 6 \mathrm{H}), 1.75-1.81(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 12 \mathrm{H})$.

2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-(pyrrolidin-1-yl)phthalazin-1(2H)-one (3d).

31 mg (yield 38\%) of the title compound was obtained by the same procedure for the compound $\mathbf{3 j}$, using $50 \mathrm{mg}(0.17$ mmol) of 2-(3-chloropropyl)-4-(pyrrolidin-1-yl)phthalazin-

1(2H)-one.
$R_{f}=0.47(10 \% \mathrm{MeOH}$ in MC).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.43-8.46 (m, 1H), 8.00$8.03(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-3.56(\mathrm{~m}$, $4 \mathrm{H}), 3.26(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-$ $2.54(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.29(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.94-2.03(\mathrm{~m}$, $6 \mathrm{H}), 1.82-1.86(\mathrm{~m}, 2 \mathrm{H})$.
2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-(piperidin-1-yl)phthalazin-1(2H)-one (3e).

39 mg (yield 45%) of the title compound was obtained by the same procedure for the compound $\mathbf{3 j}$, using $54 \mathrm{mg}(0.18$ mmol) of 2-(3-chloropropyl)-4-(piperidin-1-yl)phthalazin-1(2H)-one.
$R_{f}=0.47(10 \% \mathrm{MeOH}$ in MC).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40-8.43(\mathrm{~m}, 1 \mathrm{H}), 7.86-$ $7.89(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.12-$ $3.15(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.54(\mathrm{~m}, 1 \mathrm{H})$, 2.20-2.27 (m, 2H), 2.18 (s, 3H), 1.87-2.00 (m, 2H), 1.75$1.83(\mathrm{~m}, 6 \mathrm{H}), 1.61-1.71(\mathrm{~m}, 2 \mathrm{H})$.
2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-(4-methylpiperidin-1-yl)phthalazin-1(2H)-one (3f).

53 mg (yield 57%) of the title compound was obtained by the same procedure for the compound $\mathbf{3 j}$, using $60 \mathrm{mg}(0.19$ mmol) of 2-(3-chloropropyl)-4-(4-methylpiperidin-1-yl)-phthalazin-1 $(2 H)$-one.
$R_{f}=0.22(10 \% \mathrm{MeOH}$ in MC$)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41-8.43(\mathrm{~m}, 1 \mathrm{H}), 7.85-$ $7.88(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.50(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.79(\mathrm{t}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.46$ $(\mathrm{m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.96-2.11(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.80(\mathrm{~m}, 4 \mathrm{H})$, $1.54-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H})$.

2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-(4-chloropiperidin-1-yl)phthalazin-1(2H)-one (3g).

43 mg (yield 38\%) of the title compound was obtained by the same procedure for the compound $\mathbf{3 j}$, using $74 \mathrm{mg}(0.22$ mmol) of 2-(3-chloropropyl)-4-(4-chloropiperidin-1-yl)-phthalazin-1 2 H)-one.
$R_{f}=0.30(10 \% \mathrm{MeOH}$ in MC$)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.42-8.45 (m, 1H), 7.71$7.85(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.29(\mathrm{~m}, 1 \mathrm{H})$, $4.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.02-3.10(\mathrm{~m}$, $4 \mathrm{H}), 2.54(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.34$ $(\mathrm{m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.16(\mathrm{~m}, 6 \mathrm{H}), 1.79-1.81(\mathrm{~m}, 4 \mathrm{H})$.

2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-(4-oxopiperidin-1-yl)phthalazin-1(2H)-one (3h).

35 mg (yield 42\%) of the title compound was obtained by the same procedure for the compound $\mathbf{3 j}$, using $53 \mathrm{mg}(0.17$ mmol) of 2-(3-chloropropyl)-4-(4-oxopiperidin-1-yl)-phthalazin-1 $(2 H)$-one.
$R_{f}=0.36(10 \% \mathrm{MeOH}$ in MC$) * 2$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46-8.48(\mathrm{~m}, 1 \mathrm{H}), 7.91-$ $7.93(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~s}$, $1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.56(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.08(\mathrm{~d}, \mathrm{~J}=11.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.43-2.48 (m, 1H), $2.17(\mathrm{~s}, 3 \mathrm{H}), 2.00-2.13(\mathrm{~m}, 4 \mathrm{H}), 1.71-$ $1.82(\mathrm{~m}, 4 \mathrm{H})$.

2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-morpholinophthalazin-1(2H)-one (3i).

56 mg (yield 61%) of the title compound was obtained by the same procedure for the compound $\mathbf{3 j}$, using $58 \mathrm{mg}(0.19$ mmol) of 2-(3-chloropropyl)-4-morpholinophthalazin-1(2H)-one.
$R_{f}=0.28(10 \% \mathrm{MeOH}$ in MC$)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.43-8.46 (m, 1H), 7.88$7.91(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.21$ (d, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.15-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.46-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.22(\mathrm{~m}, 4 \mathrm{H})$, 1.79-1.86 (m, 4H).

2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-(piperazin-1-yl)phthalazin-1(2H)-one (3k).

30 mg (yield 28\%) of 2-\{3-[4-(3-Acetamidophenyl)piperi-din-1-yl]propyl $\}$-4-[4-(t-butoxycarbonyl)piperazin-1-yl]-phthalazin- $1(2 \mathrm{H})$-one was obtained by the same procedure for the compound $\mathbf{3 j}$, using $75 \mathrm{mg}(0.019 \mathrm{mmol})$ of 2-(3-chloropropyl)-4-[4-(t-butoxycarbonyl)piperazin-1-yl]phthal-azin-1 $(2 H)$-one. A solution of 2-\{3-[4-(3-Acetamidophen-yl)piperidin-1-yl]propyl\}-4-[4-(t-butoxycarbonyl)piperazin1 -yl]phthalazin- $1(2 H)$-one ($30 \mathrm{mg}, 0.051 \mathrm{mmol}$) in HCl solution (1.25 M in $\mathrm{MeOH}, 3 \mathrm{~mL}$) was stirred at room temperature for 6 h . The mixture was evaporated under reduced pressure and dried in vacuo to give $\mathbf{3 k}$ (26 mg , 98\%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) δ 8.41-8.43 (m, 1H), 8.05-8.08 (m, 1H), 7.90-7.98 (m, 2H), $7.66(\mathrm{~s}, 1 \mathrm{H}), 7.25-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.02(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.64-$ $3.74(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.59(\mathrm{~m}, 10 \mathrm{H}), 3.06-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.84-$ $2.93(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.99-2.06(\mathrm{~m}$, 4H).
2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-(4-methylpiperazin-1-yl)phthalazin-1(2H)-one (3I).

26 mg (yield 29\%) of the title compound was obtained by the same procedure for the compound $\mathbf{3 j}$, using $58 \mathrm{mg}(0.18$ mmol) of 2-(3-chloropropyl)-4-(4-methylpiperazin-1-yl)-phthalazin-1(2H)-one.
$R_{f}=0.58(10 \% \mathrm{MeOH}$ in MC$)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.43-8.45 (m, 1H), 7.86$7.89(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 4 \mathrm{H})$, $3.03(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~m}, 4 \mathrm{H}), 2.48(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.43-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.96-2.11$ ($\mathrm{m}, 4 \mathrm{H}$), 1.67-1.79 (m, 4H).

2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-(cyclohexylamino)phthalazin-1(2H)-one (3m).

21 mg (yield 24\%) of the title compound was obtained by the same procedure for the compound $\mathbf{3 j}$, using $56 \mathrm{mg}(0.18$ mmol) of 2-(3-chloropropyl)-4-(cyclohexylamino)phthal-azin-1 $(2 \mathrm{H})$-one.
$R_{f}=0.23(10 \% \mathrm{MeOH}$ in MC).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45-8.47(\mathrm{~m}, 1 \mathrm{H}), 7.72-$ $7.77(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.32(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.77-$ $3.81(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.48-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.36(\mathrm{~m}, 4 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, $1.95-2.14(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.51(\mathrm{~m}, 6 \mathrm{H})$.

2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-[methyl(phenyl)amino]phthalazin-1(2H)-one (3n).

42 mg (yield 40\%) of the title compound was obtained by the same procedure for the compound $\mathbf{3 j}$, using $67 \mathrm{mg}(0.20$ mmol) of 2-(3-chloropropyl)-4-[methyl(phenyl)amino]-phthalazin-1 $(2 H)$-one.

$$
R_{f}=0.36(10 \% \mathrm{MeOH} \text { in } \mathrm{MC}) * 2
$$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.64-7.69 (m, 1H), 7.52-7.57 (m, 1H), 7.39-7.46 (m, 3H), $7.31(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.87-7.00(\mathrm{~m}, 4 \mathrm{H}), 4.30(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{t}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.00-2.15$ $(\mathrm{m}, 4 \mathrm{H}), 1.81-1.87(\mathrm{~m}, 4 \mathrm{H})$.

2-\{3-[4-(3-Acetamidophenyl)piperidin-1-yl]propyl\}-4-[(chlorophenyl)amino]phthalazin-1(2H)-one (30).

24 mg (yield 29\%) of the title compound was obtained by the same procedure for the compound $\mathbf{3} \mathbf{j}$, using $55 \mathrm{mg}(0.16$
mmol) of 2-(3-chloropropyl)-4-[(4-chlorophenyl)amino]-phthalazin-1 $(2 H)$-one.
$R_{f}=0.29(10 \% \mathrm{MeOH}$ in MC$)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50-8.53(\mathrm{~m}, 1 \mathrm{H}), 7.78-$ $7.85(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.26$ (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.38-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.96-2.14(\mathrm{~m}, 4 \mathrm{H})$, 1.61-1.74 (m, 4H).

