
Supplementary Data

New Application of 2-(4-N-Phenyl-3-thiosemicarbazone)-8-hydroxyquinoline as a Sensor for Relay Recognition of Cu²⁺ and Sulfide in Aqueous Solution

Lijun Tang,* Pei Zhou, Zhenlong Huang, Jia Zhao, and Mingjun Cai

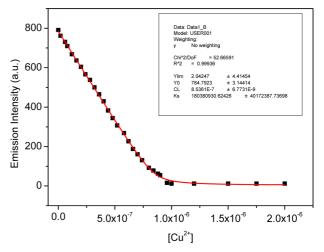
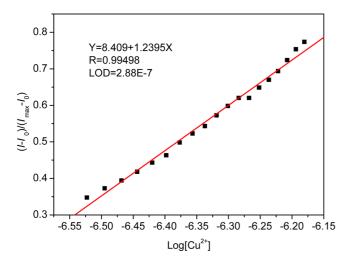
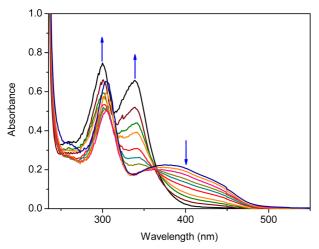
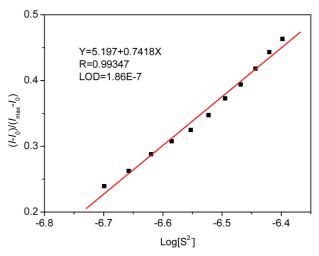

Department of Chemistry, Liaoning Provincial Key Laboratory for the Synthesis and Application of Functional Compounds,
Bohai University, Jinzhou 121013, China
Received June 24, 2013, Accepted July 5, 2013

Figure S1. Effects pH on the fluorescence intensity of sensor 1 in water (1 μ M, 1% DMSO) solution.


Figure S2. Absorbance spectra of **1** solution (10 μ M) in HEPES buffer (1% DMSO, HEPES 20 mM, pH = 7.4) in the presence of Cu²⁺ (0-10 μ M).


Figure S3. Curve Estimation plot using Eq. (1), assuming 1:1 stoichiometry for association between receptor 1 and Cu^{2+} : fluorescent titration results (512 nm). The binding stoichiometry of receptor 1 with Cu^{2+} was calculated through the equation, which was given as follows:

$$y = Y_0 + ((Ylim - Y_0)/2) \times (1 + (x/C_L) + (1/(Ks \times C_L)) - ((1 + (x/C_L) + (1/(Ks \times C_L)))^2 - 4 \times (x/C_L))^{0.5})$$


 Y_0 is the fluorescence intensity of free 1, Y_{lim} is the fluorescence intensity measured with excess amount of Cu^{2+} , C_L is the concentration of chemosensor, x is the Cu^{2+} concentration, K_s is the association constant. As shown in Fig. S5, the nonlinear least-squares fitting affords a smooth curve ($R^2 = 0.99936$), indicating that receptor 1 associates with Cu^{2+} in a 1:1 stoichiometry. The association constant, K_s , between 1 and Cu^{2+} , was determined from the ratio of intercept/slope to be $1.8 \times 10^8 \, \mathrm{M}^{-1}$.

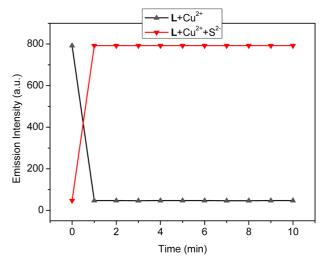

Figure S4. Normalized response of fluorescence intensity of **1** to $log[Cu^{2+}]$ in HEPES buffer (1% DMSO, HEPES 20 mM, pH = 7.4). [1] = 1 μ M, λ_{em} = 512 nm.

Figure S5. Absorbance spectra of 1-Cu²⁺ (10 μ M) in HEPES buffered (1% DMSO, HEPES 20 mM, pH = 7.4) solution in the presence of S²⁻ (0-20 μ M).

Figure S6. Normalized response of fluorescence intensity of 1-Cu²⁺ to log[S²⁻] in HEPES buffer (1% DMSO, HEPES 20 mM, pH = 7.4). [1-Cu²⁺] = 1 μ M, λ_{em} = 512 nm.

Figure S7. Time dependence of fluorescence response of 1 solution (1 μ M) to Cu^{2+} (1 μ M) and 1- Cu^{2+} solution (1 μ M) to S^{2-} (2 μ M). $\lambda_{em} = 512$ nm.