Supporting Information

Effects of Fused Thiophene Bridges in Organic Semiconductors for Solution-Processed Small-Molecule Organic Solar Cells

Jae Kwan Lee,* Sol Lee,† and Suk Jin Yun

Department of Chemistry Education, Chosun University, Gwangju 501-759, Korea. *E-mail: chemedujk@chosun.ac.kr [†]Department of Green Energy Engineering, Hoseo University, Chungnam 336-795, Korea Received March 31, 2013, Accepted April 24, 2013

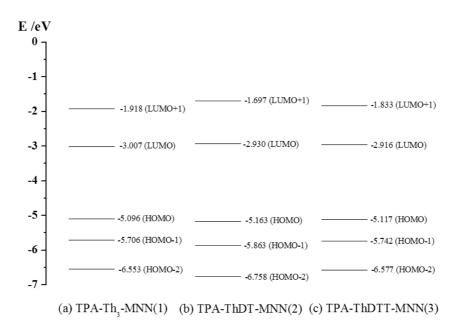


Figure S1. Molecular orbital surfaces from HOMO-2 to LUMO+2 of TPA- $[\pi$ -bridges]-MMN [1, 2, and 3] obtained at B3LYP/6-31G* level.

Table S1. Caculated excitation energy characteristics of the 1, 2, and 3^[a]

Compound	E(eV)/nm	$f^{[b]}$	Composition (%) [c]
1	1.903/651.2	0.7977	HOMO→LUMO (70.54)
	2.545/487.1	1.0485	HOMO-1→LUMO (68.38)
	3.317/373.7	0.0999	HOMO-2→LUMO (52.78)
2	2.043/606.6	0.8173	HOMO→LUMO (70.44)
	2.795/443.5	1.1405	HOMO-1→LUMO (67.04)
	3.169/391.2	0.1766	HOMO-2→LUMO (18.78)
3	1.974/627.8	0.8414	HOMO→LUMO (70.44)
	2.639/469.8	1.111	HOMO-1→LUMO (67.63)
	2.994/414.0	0.2453	HOMO-2→LUMO (19.64)

[[]a] The characteristics were calculated by the time dependent-density functional theory (TD-DFT) using the B3LYP functional/6-31G* basis set. [b] The oscillator strength (f) of a transition is a measure of its intensity and is related to the molar absorption coefficient. [c] The composition means contribution of each transition for excitation energies.