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Grb2 is an adapter protein involved in the signal transduction and cell communication. The Grb2 is responsible

for initiation of kinase signaling by Ras activation which leads to the modification in transcription. Ligand

based pharmacophore approach was applied to built the suitable pharmacophore model for Grb2. The best

pharmacophore model was selected based on the statistical values and then validated by Fischer’s

randomization method and test set. Hypo1 was selected as a best pharmacophore model based on its statistical

values like high cost difference (182.22), lowest RMSD (1.273), and total cost (80.68). It contains four

chemical features, one hydrogen bond acceptor (HBA), two hydrophobic (HY), and one ring aromatic (RA).

Fischer’s randomization results also shows that Hypo1 have a 95% significant level. The correlation coefficient

of test set was 0.97 which was close to the training set value (0.94). Thus Hypo1 was used for virtual screening

to find the potent inhibitors from various chemical databases. The screened compounds were filtered by

Lipinski’s rule of five, ADMET and subjected to molecular docking studies. Totally, 11 compounds were

selected as a best potent leads from docking studies based on the consensus scoring function and critical

interactions with the amino acids in Grb2 active site.
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Introduction

Growth factor receptor-bound protein 2 (Grb2) is a 25 kDa

protein,1 plays an important role between a phosphotyro-

sine signal and downstream cellular events as an adaptor

protein.2-4 Grb2 is widely expressed in epithelial cell growth,

encoded by grb2 gene. Grb2 is involved in the signal

transduction pathway and essential for multiple cellular

functions. It regulates the Ras activation through its as-

sociation with guanine nucleotide exchange factor of SOS

and initiates the MAP kinase pathway which leads to many

cancers.5-7 Grb2 has linked with an epidermal growth factor

receptor tyrosine kinase to activate Ras, Erk1 and Erk2

(Extracellular Signal-Regulated Kinases).8-11 It is also

important for linking receptor tyrosine kinases to small GTP-

binding protein signaling, such as growth factor-induced

cytoskeleton organization.12,13 The Grb2-SOS complex can

bind with insulin receptor substrate-1 (IRS-1) which is one

of the primary targets for insulin and insulin-like growth

factor receptors. Furthermore, the independent of IRS-1 and

Grb2 links the insulin receptor to Ras signaling through

another Shc adapter protein.14 Grb2, emerged as a potent

therapeutic target for anticancer therapy, play a vital role in

morphogenesis as well as angiogenesis. Many researchers

reported that the small molecules which can inhibit of the

Grb2 function could be a potential anticancer agent by block

the transformation and proliferation of various cell types.

There are many reported inhibitors available to bind in the

SH2 domain of Grb2 to inhibit its function. Moreover,

protein tyrosine kinase (PTK) inhibitors such as Gleevec and

CEP-701 are necessary to stop the Grb2 function. The

P27Kip1 is a downregulated in aggressive human cancers and

this (P27) inhibitor can inhibit Grb2 function by blocking its

association with guanine nucleotide exchange factor of

SOS16 and these can be important information for the

development of anti-cancer agents.17

In this work pharmacophore modeling and molecular

docking approaches has been employed to identify the small

molecules which contain the important chemical features to

inhibit the function of Grb2. The HypoGen algorithm was

used to develop the 3D pharmacophore models based on the

diverse set of experimentally proved Grb2 inhibitors. The

best pharmacophore model was selected based on its stati-

stical values and validated by Fischer’s randomization method

and test set. The validated best pharmacophore hypothesis

was used as a 3D query to search the various chemical data-

bases, namely Maybridge, Chembridge, and NCI2000. Drug-

like compounds with predicted pharmacophoric features

along with the good estimated activity values were retrieved

from the databases and evaluated using molecular docking

studies.
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Materials and Methods

Preparation of Molecules. Pharmacophore modeling is

an ensemble of steric and electronic features that is necess-

ary to ensure the optimal supramolecular interactions with a

specific biological target. We have collected 38 inhibitors,

tested using same biological assay method from scientific

literature.18 The 2D formats of all molecules were produced

using Chemsketch19 and converted into 3D structures using

Discovery Studio (DS).20

Preparation of Training and Test Sets. The best training

set molecules should satisfy the certain criteria’s like it cover

wide range of activity values which span four orders of

magnitude and contain a minimum of 16 structurally diverse

molecules.21 The test set was used to validate the hypothesis

whether it can able to predict the activity values of diverse

compounds beyond the training set in the same order of

magnitude or not. The CHARMm force filed was applied to

each molecule in the training and test sets and 255 confor-

mations were generated for each compound using Best

conformational model with an energy constraint of 20 kcal/

mol.22 The Feature Mapping method23 was used to select the

important chemical features present in known highly active

Grb2 inhibitors. 

Database Search and ADMET Calculation. Virtual

screening technique was used to prioritizing chemical

compounds for identifying hit compounds from database.

Finding the drug-like properties from virtual screening is an

important process for further in vitro studies.24,25 Ligand

pharmacophore mapping protocol was used for virtual screen-

ing by applying Fast/Flexible search option implemented in

DS. 

The screened compounds from database search were

filtered by applying maximum fit value, Lipinski’s rule of

five26 and ADMET properties (Adsorption, Distribution,

Metabolism, Excretion and Toxicity). The Lipinski’s rule of

five was used to evaluate the drug-likeness or determine

whether a chemical compound has certain pharmacological

property to be an orally active drug in humans.27 The criteria

for Lipinski rule of 5 (a) less than 5 hydrogen bond donors,

(b) not more than 10 hydrogen bond acceptors (c) molecular

weight should be under 500 Daltons, and (d) LogP should be

less than 5. The ADMET describes the important pharmaco-

kinetic properties of a drug which will be more helpful to

find the orally bioactive compound. The hit compounds

were sorted based on the above rules and subjected to

molecular docking studies.

Molecular Docking. The molecular docking has become

a powerful method to predict or increase the efficiency in

lead optimization. The docking based pharmacophore model

was used to find the critical interaction between protein and

ligand. Molecular docking elucidates how well the small

molecules interact with protein.28 There are many Grb2

complex crystal structures available in Protein Data Bank

(PDB, www.rcsb.org).29 Based on the resolution, the crystal

structure of Grb2-SH2 domain complex with a flexible Ac-

pY-E-N-NH2 tripeptide mimic (PDB ID: 3KFJ) was select-

ed as a receptor. The water molecules were removed and the

hydrogen atoms were added by applying CHARMm force

field using DS. LigandFit module was used to dock the

small molecules into the active site of Grb2. LigandFit per-

forms docking in three stages such as docking, in-situ ligand

minimization, and scoring. During docking, an attempt is

made to dock a ligand or series of ligands into a user defined

binding site. If a receptor molecule is specified for ligand

minimization, the minimization will perform in the presence

of the receptor otherwise ligands are minimized in vacuum

and also the receptor is held rigid. In scoring stage the

generated ligand poses were scored for a strong binding at

the active site. 

Define and Edit Binding Site/DS was used to identify

receptor binding site for a ligand molecule and Smart Mini-

mizer algorithm was used to minimize the protein. All dock-

ing parameters were set at their default values. Ligscore and

Piecewise Liner Potential (PLP), Potential Mean Force

(PMF), Jain scoring30 and Ludi31,32 scoring functions were

used to find ligand binding affinity. Top ten conformations

were generated for each ligands based on its dock score.

Results and Discussion

Pharmacophore Generation. Totally 38 compounds were

collected from the literatures33 among them 16 were selected

as training set and remaining compounds as test set. Struc-

tures and biological activities of the training set compounds

are shown (Figure 1). The training set compounds includes

nonphosphorylated cyclopeptide, a variety of potent non-

phosphorylated cyclopeptide (Grb2-SH2 domain antagonists

and indole-3-yl propylamine derivatives) inhibitors of scaffolds

which resulted in high affinity to Grb2-SH2 domain. These

available compounds provide ideal chemical structures for

the development of Grb-SH2 domain inhibitors. The maxi-

mum number of 255 conformations was generated for each

molecule using Poling algorithm with a constraint of 20

kcal/mol energy cutoff value above the global minimum. 

The Feature Mapping protocol contains various chemical

features but only Hydrogen Bond Acceptor (HBA), Hydrogen

Bond Donor (HBD), and Hydrophobic (HY) features were

mapped well with most of the highly active compounds in

training set. Thus, these chemical features were used to

generate the hypotheses based on the activity value of

training set compounds. The generated top ten hypotheses

contain the combination of three chemical features such as

HBA, RA, and HY. The statistical values of the best ten

pharmacophore hypotheses have shown (Table 1). Debnath’s

analysis was used to select the best hypothesis among ten

hypotheses. The fixed cost is the sum of cost components

that includes weight cost, error cost and configuration cost

and represents a cost of the theoretical ideal hypothesis. This

could absolutely predict the activity of compounds in the

training set with lowest deviation, while null cost represent-

ed the cost of hypothesis with no features that estimates

every activity to be the average activity. The fixed and null

cost values are 63.51 and 262.91, respectively. A value of
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Figure 1. 2D structures of training set compounds. The compound numbers and IC50 values are shown at the bottom of compounds.

Table 1. Statistical values of the top ten pharmacophore hypotheses

Name Total cost Cost differencea RMSb Correlation
Featuresc

Max fit
HBA RA HY

Hypo1 80.68 182.22 1.27 0.97 1 1 2 11.49

Hypo2 91.72 171.19 1.80 0.93 1 1 2 10.56

Hypo3 94.12 168.79 1.94 0.92 1 1 2 08.76

Hypo4 94.82 168.09 1.95 0.92 1 1 2 09.40

Hypo5 95.87 167.04 1.98 0.92 1 1 2 09.50

Hypo6 97.25 165.66 2.04 0.91 1 1 2 09.06

Hupo7 99.12 163.79 2.08 0.91 1 1 2 09.45

Hupo8 99.69 163.22 1.98 0.92 1 1 2 11.66

Hypo9 100.20 162.71 2.09 0.91 1 1 3 12.56

Hypo10 100.69 162.22 2.13 0.91 1 1 2 09.58

The Null cost value is 262.91; Fixed Cost is 63.51; Configuration Cost is 15.94. aThe difference between Null Cost and Total Cost. bRMS-Root Mean
Square. cHBA-Hydrogen Bond Acceptor; RA-Ring Aromatic; HY-Hydrophobic.
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40-60 bit cost difference indicates that the hypothesis to

show over 90% statistical significance but Hypo1 shows the

cost difference of greater than 180 bits indicating its true

correlation data. Hypo1 shows a good statistical value such

as the lowest error value of 59.43, highest cost difference of

182.22, high maximum fit value of 11, and lowest RMSD

value of 1.2. Hence Hypo1 was selected as a best hypothesis

which consists of one hydrogen bond acceptor (HBA), two

hydrophobic (HY), one ring aromatic (RA). The chemical

features and geometric parameters of Hypo1 are shown

(Figure 2).

The training set molecules were classified into three cate-

gories based on their activity values such as highly active

(IC50 ≤ 150 nM), moderately active (150 nM > IC50 < 15,000

nM), and less active (IC50 ≥ 15,000 nM). One active com-

pound in the training set was underestimated as moderately

active, one and three moderately active compounds were

overestimated as active and underestimated as less active

compounds by Hypo1, respectively (Table 2). All the

remaining compounds in the training set were estimated in

their activity scale by Hypo1. The most active compounds of

training set (Compound1 IC50: 0.3 nM) and their features are

overlaid upon Hypo1 but less active compound (Compound

16 IC50: 56900 nM) not fitted well with Hypo1. The most

active and less active compounds in the training set were

aligned in Hypo1 was shown (Figure 3).

Pharmacophore Validation.

Fischer’s Randomization Method: Fischer’s randomi-

zation method is used to assess the quality of the Hypo1

pharmacophore model34 by randomly reassign the activity

values of molecules in the training set and these scramble

spread sheets are used to generate the new hypotheses. The

aim of this validation is to check robustness of the Hypo1

model. In this validation, to achieve 95% confidence level,

19 spreadsheets were generated by shuffling the active value

Figure 2. Pharmacophore was generated (Hypo1) using 3D
QSAR Pharmacophore generation module. (a) hydrogen bond
acceptor (HBA, green), ring aromatic (RA, orange) and hydro-
phobic (HY, cyan) features. (b) Hypo1 is shown with distance
constraints.

Table 2. Experimental and predicted activity values of the training
set molecules based on the pharmacophore model of Hypo1

Compound 

No

Fit 

Value

Exp. 

IC50 nM

Pred. 

IC50 nM
Errora

Exp. 

Scaleb
Pred. 

Scaleb

01 10.24 0.3 0.39 +1.3 +++ +++

02 9.30 3.4  3.4 -1.0 +++ +++

03 8.93 9.2 8 -1.1 +++ +++

04 8.43 14 25 +1.8 +++ +++

05 7.80 22 110 +4.9 +++ +++

06 7.58 124 180 +1.4 +++ ++

07 7.87 155 91 -1.7 ++ +++

08 6.47 1550 2300 +1.5 ++ ++

09 5.74 3900 12000 +3.1 ++ ++

10 6.95 6350 770 -8.3 ++ ++

11 5.75 7900 12000 +1.5 ++ +

12 5.75 8640 12000 +1.4 ++ +

13 5.75 11200 12000 +1.1 ++ +

14 5.75 16000 12000 -1.3 + +

15 5.74 22500 12000 -1.8 + +

16 5.75 569000 12000 -4.7 + +

a‘+’ indicates that the experimental activity value is lower than the
predicted IC50 value. ‘–’ indicates that the experimental activity value is
higher than the predicted IC50 value. 

bActivity scale: IC50 ≤ 150 nM =
+++ (highly active); 150 nM > IC50 < 15,000 nM = ++ (moderately
active); IC50 ≥ 15,000 nM = + (low active).

Figure 3. (a) Best pharmacophore model Hypo1 aligned with most
active compound (Compound1 IC50: 0.3 nM) and (b) less active
compound (Compound16 IC50: 56900 nM) was overlaid upon
Hypo1.

Figure 4. Fischer’s randomization result. 13 random spread sheets
were generated from 19 random spread sheet generations. Number
of hypothesis is shown in x axis and total cost value showed in y
axis.
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Figure 5. 2D structures of test set compounds. The compound numbers and IC50 values are shown at the bottom of compounds.
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of the compounds present in the training set using following

formula [1−(1+X)/Y] × 100, where X, total number of hypo-

theses having a total cost lower that Hypo X and Y, total

number of Hypogen runs (initial + random runs). Here, X =

0 and Y = (19 + 1), S = [1−(1+0)/(19+1))] × 100% = 95%.

Out of 19 random spread sheets, 13 spread sheets could

produce the hypothesis but remaining 6 spread sheets were

failed to generate the hypothesis (Figure 4). However, the

total cost values of all scrambled hypotheses were greater

than the original hypothesis which proved the robustness of

Hypo1 hypothesis.

Test Set: The test set, consist of 22 structurally distinct

compounds, was used to check whether Hypo1 can able to

predict the activity of compounds in same order of magni-

tude other than the training set or not. The test compounds

(Figure 5) were classified into three sets based on their

activity scale: IC50 ≤ 150 nM: highly active (+++), 150 nM >

IC50 < 15,000 nM: moderate active (++), IC50 ≥ 15,000 nM:

less active (+). Hypo1 underestimated the one active compound

as moderately active (Compound. No 14) and all the

remaining compounds were predicted in their own activity

scales (Table 3). Moreover, error values of all compounds in

the test set was less than 2.5 and the correlation of coeffi-

cient value for the test set is 0.94. This test validation

indicates that the Hypo1 can able to predict the compounds

in their own activity range other than the training set

compounds. Hence, the best pharmacophore model (Hypo1)

was used as a query in virtual screening process. 

Database Search. The main purpose of virtual screening

is to find a novel scaffold to inhibit the activity of various

targets.35,36 The mode of action is to finding new molecules

from the database for biological testing. Hypo1 was used as

a 3D structural query for retrieving potent Grb2 leads from

three chemical databases including Maybridge (60,000 com-

pounds), Chembridge (50,000 compounds), and NCI2000

(239,000 compounds). There are 3,087 molecules from

Maybridge, 1,477 molecules for Chembridge and 6,326

compounds from NCI2000 have been satisfied all chemical

features present in the Hypo1. Totally, 10,890 hit compounds

were sorted out to 482 compounds by applying maximum fit

value of 11. The sorted 482 molecules (Maybridge (23),

Chembridge (23), NCI2000 (436)) were tested for Drug-like

and ADMET properties. Finally, 11 compounds were select-

ed based on the above criteria that includes the fit value of

11.02 to 11.27 (Table 4) and subjected to molecular docking

studies for further refinement. 

Molecular Docking. The main aim of docking study is to

find the binding affinity between protein-ligand complexes.

Training set compounds (Compound1 IC50: 0.3 nM) and 11

hit compounds retrieved from the database screening which

satisfied the drug-like properties were docked in the active

site of Grb2 using LigandFit38 module in DS and top ten

poses were saved for each molecule. In the case of training

set molecules, most of the active compounds show an aver-

age fitness scores more than 7 and dock score of 100.

The active training set compounds showed hydrogen bond

and hydrophobic interactions with active site residues of

Grb2 such as Arg67, Arg86, Ser90, Ser96, Lys109, and

His107. The nitro group in inhibitor forms a salt bridge with

Lys109 and some of the active compounds in the training set

show strong hydrogen bond interaction with Ser90 and

Ser96. The overall interaction between the inhibitor and the

receptor is not weakening because the carboxyl group makes

extensive hydrogen bond interactions with Arg67 and Arg86.

Table 3. Experimental and predicted activity values of 22 test set
molecules against Hypo1

Compound 

No

Fit 

Value

Exp. IC50 

nM

Pred. IC50 

nM
Errora

Exp. 

Scaleb
Pred. 

Scaleb

01 10.22 0.4 0.71 1.78 +++ +++

02 09.89 0.9 1.57 1.75 +++ +++

03 09.54 1.68 1.94 1.15 +++ +++

04 08.89 8 10.47 1.30 +++ +++

05 08.74 8.84 12.26 1.46 +++ +++

06 08.45 10 23.81 2.38 +++ +++

07 08.45 10 23.81 2.38 +++ +++

08 08.68 21 14.11 1.48 +++ +++

09 08.31 25.3 43.31 1.71 +++ +++

10 08.01 50 63.23 1.32 +++ +++

11 04.94 59 99.00 1.67 +++ +++

12 08.01 75.7 36.96 2.04 +++ +++

13 07.84 81 98.54 1.21 +++ +++

14 07.41 129.9 266.33 2.05 +++ ++

15 07.83 137 100.52 1.36 +++ +++

16 07.58 167 476.41 2.85 ++ ++

17 06.83 1100 2000.57 1.81 ++ ++

18 06.48 1300 2230.29 1.71 ++ ++

19 06.75 2000 1195.88 1.67 ++ ++

20 06.70 2500 1000.53 2.49 ++ ++

21 05.70 15000 13384.10 1.12 + +

22 05.58 15000 17681.40 1.17 + +

aError value shown in all positive values, it’s directly related to the
experimental and predicted activity value. bActivity scale: Experimental
activity scale +++, IC50 ≤ 150 nM is highly active; ++, 150 nM > IC50 <
15,000 nM are moderate active; +, IC50 ≥ 15,000 nM are less active.

Table 4. The fit value and their predicted IC50 value for the final hit
compounds from virtual screening

Compound 

No

Compound

Name
Fit Valuea Pred. IC50 nM

b

01 NCI0169143 11.25 0.03

02  NCI0029868 11.27 0.03

03 NCI0643540 11.22 0.04

04 NCI0613586 11.21 0.04

05 NCI0644964 11.08 0.05

06 NCI0029866 11.12 0.05

07 NCI0668890 11.08 0.05

08 NCI0667653 11.07 0.05

09 NCI0243544 11.06 0.05

10 NCI0055732 11.06 0.05

11 NCI0164083 11.04 0.06

aFit value of 11 database compounds have been shown in the ranges
between 0.03-0.06. bPredicted activity values (11.04-11.27) of the data-
base compounds were shown. 
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In addition, database hit compounds formed hydrogen bond

and hydrophobic interactions with most of the critical

residues such as Arg67, Arg86, Ser90, Ser96, Lys109, and

His107 and fitness scores of 11 and good dock score values

of above 100. The 2D structures of active training set

compound (Compound1 IC50: 0.3 nM) and Hypo1 overlay

with active compound and binding modes of the active

compound with active site residues of Grb2 have shown

(Figure 6(a)). The 2D structures of final hit compound

(NCI0169143) and Hypo1 overlay with hit compound and

binding modes of the hits with active site residues of Grb2

and most interaction have shown (Figure 6(b)).

Conclusions

The aim of this pharmacophore modeling based molecular

docking is to find a new leads from database screening to

inhibit the function of Grb2. We have implemented a ligand-

based pharmacophore modeling to identify the vital chemical

features to inhibit Grb2 activity. The best pharmacophore

model was developed for Grb2 based on the currently

available inhibitors. The Hypo1, best pharmacophore model

consists of four chemical features: one HBA, one RA, and

two HY, it shows a good cost difference of 182.22, lowest

RMSD (1.2), and total cost (80.68). The correlation coeffi-

cients of training set and test set were 0.97 and 0.94, respec-

tively. The Fischer’s randomization results have clearly

shown that 95% strong confidence on an accurate and

reasonable pharmacophore model Hypo1 with statistical

significance and it is not generated by chance. Hypo1 was

used as a 3D query for screening large databases like May-

bridge, Chembridge, and NCI2000. Totally, 11 drug-like hit

compounds were selected for molecular docking studies

which satisfied all the chemical features of Hypo1, shows

good fit value, ADMET, and Lipinski’s rule of five. All the

hit molecules have shown high dock score (above 100) and

formed hydrogen bond and hydrophobic interactions with

the most of the critical residues in Grb2. Based on the above

validations we suggest that the chemical feature of Hypo1 is

important for the development of Grb2 inhibitor. 
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