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The most detailed observables in theoretical studies of

chemical reactions are the quantum state-to-state reaction

probabilities determined as the modulus squared of the

scattering matrix (S matrix) elements. Quantum mechanical

methodology for S matrix calculation is well developed,

especially in the level of Born-Oppenheimer approximation

used for separating the nuclear dynamics from electronic

motions. One of such numerical methods adopts boundary

value Bloch operator in setting up the basis set representa-

tion of Schrödinger equation for the nuclear dynamical

solution in the continuum region of energy (scattering

energy) such as in the log derivative Kohn variational

principle (Y-KVP) method of Manolopoulos and Wyatt.1 It

has virtues of “totally energy-independent and real-valued

basis functions/intermediate integrals” up to the point just

before the final complex-valued S matrix evaluation. Since

one must investigate the scattering solutions for many

energies in the general practice of scattering problem, these

properties substantially increase the computational efficiency

than otherwise.

However, when applied for general reactive multi-arrange-

ment scattering on non-orthogonal coordinate system (e.g.,

the well-known collinear H2+H reactive scattering), it turns

out to be inevitable to adopt wasteful redundant basis sets,

each of which suitable for entrance and exit channels (at

least, in the primitive direct product basis set description),

and the subsequent cumbersome exchange-type integrations

between the functions defined on different coordinate systems

are unavoidable (about half of the integrals are of this type

for the above example).1,2 Such formal inefficiency in the Y-

KVP method can be avoided in the S-matrix version of

Kohn variational principle (S-KVP) method by replacing the

real-valued and energy-independent continuum-type basis

functions with complex-valued and energy-dependent ones.3

However, it accompanies adverse effects, i.e., making a

small rectangular part of Hamiltonian matrix to be complex-

valued and energy-dependent.

This work was motivated by noting that a delta function is

included in the definition of conventional Bloch operator,

consequently, it becomes a surface operator in multi-dimen-

sional problem.2 By changing the effective region of the

Bloch operator from surface to volume, we might hope to

remove such unfavorable features of the Y-KVP method in a

different way, and we intend to pursue this idea further. In

the long run, no redundant basis sets are needed and all basis

functions are real-valued and energy-independent, sub-

sequently most of the intermediate integrals are real-valued

and energy-independent except Nopen (the number of open

channels) integrals which are complex-valued and energy-

dependent in the present approach. All such features add up

to suggest better performance over both of the Y-KVP and

S-KVP methods, at least formally. Unfortunately, a small

rectangular Bloch-operator-related matrix becomes complex-

valued (though it can be evaluated from energy-independent

intermediate integrals) just like in the S-KVP method.

Perhaps, more importantly, it is a pity that this method is not

benefited from the variational property, thus the calculated

numerical S matrix is not guaranteed to be symmetric, unlike

in the Y-KVP and S-KVP methods, as a result, it might be

suffered from unstable features.

Now we detail the derivation of the present approach.

Scattering wave function ψ is chosen to satisfy the usual S-

matrix boundary condition in the asymptotic region as a

linear combination of incoming (I) and outgoing (O) waves

with S matrix as the expansion coefficient,

.  (1)

For simplicity, we use one-dimensional s-wave scattering

problem on the radial r coordinate, unless otherwise noted.

The Schrödinger equation for ψ with the Hamiltonian

operator  and the scattering energy E, along with the

boundary condition implied by Eq. (1) can be written as
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,  (3)

,

where the unit-flux normalized incoming and outgoing

waves are,

,

and the m, k, and Y are the particle reduced mass, wave-

number, and a quantity proportional to the log derivative of

ψ I−OS→

Ĥ
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outgoing wave O, respectively. Also, the point p is located in

the asymptotic region. The operator including the delta

function in Eq. (3) can be considered as “surface-Bloch

operator” in our present point of view.

The linear expansion of ψ by real-valued and energy-

independent L2 (square integrable) basis functions ui's is

given by

. (4)

The corresponding basis set is defined on a finite range

[0, p] and composed of two subsets; one is termed “interior

basis” and composed of Nbasis basis functions which satisfy,

(0)=0, (p)=0, and the other includes the so called

“boundary function” which satisfies, u0(0)=0, u0(p)=1. We

combine Eqs. (2), (3) and transform them into a linear

system of equations by projecting them onto basis functions

as follows using Galerkin’s method,4

,

which is equivalent to,

,  (5)

, for .  (6)

The final solution of Eqs. (4)-(6) turns out to be identical to

the one obtained by Y-KVP method which involves a

Hamiltonian-related symmetric coefficient matrix for Ci’s

and the solution is variationally stable.2

We modify the conventional Y-KVP method by replacing

 with  in Eq. (5) while keeping Eq.

(6) intact. Then, Eq. (5) is transformed to

.

Next, we replace  with  to obtain

,  (7)

where  is termed “volume-Bloch operator”

and introduced by us for the first time to our best knowledge.

The  is chosen as real-valued and a bell shape

function centered at r = p in the asymptotic region to ensure

the validity of Eq. (1) (or, equivalently, Eq. (3)) which

effectively imposes the proper boundary condition on ψ.

Also, the outer boundary of the basis function definition

range should be properly extended to accommodate the

effective region of the volume-Bloch operator, thus p in Eq.

(7) is no longer equal to the outer boundary of Eq. (4) but

located inside the range.

The Eqs. (4), (6), and (7) constitute a novel form of linear

system of inhomogeneous equations for the expansion

coefficients Ci's which is our main results of the present

approach. This system of equations can be cast into the

matrix-vector form for the coefficients Ci's, as follows,

MC = I, (8)

where the elements of matrices are

, , 

.

To obtain a working equation to be used for the S matrix

extraction, we operate the volume-Bloch operator with Y*

(instead of Y) on the particular scattering wave function ψ

satisfying Eq. (1) in the asymptotic region (around r = p) as

follows,

  .  (9)

The LHS of Eq. (9) is further simplified by expanding ψ

according to Eq. (4), and noting that the basis functions are

real-valued, we get

,  (10)

where we also note that the intermediate integrals used to set

up Eq. (8) appear again, thus no additional integration is

needed. 

The S matrix is simply given by inverting Eq. (10) for S.

In multi-dimensional problem, u0 basis function should be

augmented to accommodate all the open channels properly

at the specific scattering energy, and is given by

,  (11)

where I00 and M01 are square and rectangular part of I and M

matrices appeared in Eq. (8), respectively, corresponding to

the rows of open channels only. The properties of the

matrices I00, M01, M, I are complex-, complex-, mostly real-

and complex-valued, respectively. And, their sizes are,

Nopen × Nopen, Nopen × (Nopen + Nbasis), (Nopen + Nbasis) × (Nopen

+ Nbasis), (Nopen + Nbasis) × Nopen, respectively. Also, the

intermediate integrals used for calculating these matrices are

energy-dependent, -independent, -independent, and energy-

dependent, respectively. 

Note that the elements of I are zeroes except Nopen

elements (each corresponding to a specific boundary condi-

tion) located along the diagonal of a certain square portion of

this matrix. By taking advantage of the sparsity of I, the

matrix inversion in Eq. (11) can be done more efficiently

using partitioned matrix inversion technique after parti-

tioning M according to the basis function types (i.e., by

noting whether the row/column indices of the submatrix

correspond to interior or boundary functions).1,3 Moreover, if

the Hamiltonian matrix composing the submatrix M11

(corresponding to interior basis only), whose elements are

real-valued and energy-independent, is diagonalized in ad-

vance, we could save substantial CPU times, especially for

many-scattering-energy calculation because the matrix inver-

sion process reduces to much simpler matrix multiplications

involving eigen-solutions of the Hamiltonian matrix.

Calculation Results

The present method as summarized in Eq. (11) is applied
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to the reactive scattering model of collinear H2+H reaction

which is simple but not trivial. We use the familiar LSTH

potential energy surface and mass-scaled Jacobi coordinates

to represent the Hamiltonian operator.5 This model has been

examined previously by us and others (e.g., see references 6,

7).

The volume-Bloch operator and the boundary functions

are defined on the coordinates corresponding to their proper

arrangement channels which are mass-scaled Jacobi coordi-

nates for entrance and exit channels. For the interior basis

functions, we use two-dimensional primitive direct product

of DVR7 based on the 1-dimensional particle-in-a-box

eigenfunctions defined on the normal coordinates of the

transition state, one of whose axis bisects equally the

entrance and exit channel directions. Before setting up Eq.

(11), the above primitive basis sets are trimmed according to

the criteria of nuclear configuration, channel-radius and

potential-energy-cut.7 As seen in Figure 1, the skew angles

between two axes of scattering coordinates corresponding to

arrangement channels are 60°, thus the entrance and exit

channels are not orthogonal.

The inhomogeneity noted in Eq. (7) could be visible only

when the incoming wave entrance channel asymptotic

region coincides with the location of volume-Bloch operator,

otherwise it vanishes, i.e., we have

.  (12)

The asymptotic bell shape function  is a generaliza-

tion of  to the present two-dimensional case,

,  (13)

where Rα, pα denote the scattering coordinate (one of the

mass-scaled Jacobi coordinate describing scattering process)

and the center of the volume-Bloch operator for α-channel,

respectively. Also, the subscript α may indicate a composite

quantum number of both the arrangement channel and the

isolated H2 molecular vibrational state  where

appropriate.

Schematic representation of the collinear cross section of

LSTH potential energy surface, and the locations of trimmed

DVR basis function centers, and the region of bell shape

function  are presented in Figure 1. The boundary

function u0(R) and bell shape function g(R−p) can be seen in

Figure 2 for a typical calculation. 

We show in Figure 3 the calculated results for the

individual state-to-state P0i reaction probabilities from the

entrance channel ground vibrational state of the isolated H2

molecule to the exit channel i-th state. And, also shown are

the cumulative reaction probabilities , both

obtained from two independent calculations using different

sets of calculation parameters, each set corresponding to

covering small and large ranges of PES, respectively. The

smaller one uses interior basis of Nbasis = 318 and the outer
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Figure 1. Schematic representation of contours of LSTH potential
energy surface cut for collinear reaction, locations of DVR basis
function centers denoted by open circles, and region of bell shape
functions denoted by diamonds superimposed on the DVR basis
centers for a typical calculation.

Figure 2. Boundary function u0(R) and bell shape function g(R−p)
for a typical calculation where the outer boundary set at 5.7 bohr.

Figure 3. Cumulative reaction probabilities N(E) and individual
state-to-state P0i reaction probabilities obtained from small and
large calculations. Large ones with superscript L denoted by
assorted lines, and small ones with superscript S by assorted
symbols. The isolated H2 molecular vibrational states were
obtained along the cross section of the two-dimensional PES at the
center of g(R−p). Subsequently, the threshold energies were
calculated around 0.79 eV and 1.27 eV. See text for other detail.
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boundary of the scattering coordinate Rα (and also for Rγ) is

set at 5.7 bohr while the larger one uses interior basis of

Nbasis = 3392 and the outer boundary is set at 14 bohr. By

utilizing the micro-reversibility of the scattering process, we

symmetrized reaction probabilities, as  ,

before plotting. 

The degree of convergence of both results is presented as

the fractional errors (i.e., in a form like ) in the results

of the small calculation against those of the larger ones in

Figure 4. The errors for all the probabilities are less than 2%

for 76 energies among the 101 scattering energies examined

while the N(E) are within 1% error for 84 energies.

Therefore, we could safely concluded that the present

approach using a novel volume-Bloch operator is capable of

producing sufficiently correct and converged numerical

results for reactive scattering even though it is deficient of

variationally stable characters.
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Figure 4. Fractional errors in N(E) and P0i of small calculation
against the corresponding values of large calculation denoted by
Ne(E) and Pe

0i's, respectively. See text for other detail.


