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In the present contribution the Encounter Theory (ET) (the prototype of the classical Collision Theory in

rarefied gases) concepts for widely occurring diffusion assisted irreversible bulk reactions A + A → C and A +

B → C in liquid solutions examined by the authors in the literature are analyzed and compared with each other

for these different types of reactions. It is shown that for a particular case of equal initial concentrations

[A]0 = [B]0 in the reaction A + B → C, when the kinetics of both reactions A + A → C and A + B → C in the

framework of formal chemical kinetics and ET are the same, the accumulation of macroscopic correlations

breaking the concepts of independent encounters and leading to the Generalized Encounter Theory (GET) are

drastically different. The influence of the force interaction and the decay of nonstable reactants on the time

behavior the macroscopic correlations is also briefly discussed. 
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Introduction

Development of the theory of diffusion controlled reac-

tions is related to the Smoluchowski works on coagulation

theory in colloid chemistry.1 Extension of these works to the

theory of chemical reactions in liquid solutions has led to the

so-called Smoluchowski approach and its subsequent gener-

alizations to the general case of reacting contact sphere2 or

remote reactions.3-8 In the frame of this approach the kinetic

equations have the form of differential ones (rate equations)

similar to formal chemical kinetics equations with the only

difference that the reaction rate constant is time dependent.

Later on, traditional approaches to the derivation of kinetic

equations in the theories of reactions in solutions based on

the concepts of independent reactant pairs (“free pairs”9,10)

confirmed the results of the Smoluchowski approach. The

exact many-particle (with respect to reactants) substantiation

of these theories was performed for the simplest irreversible

reaction using the so-called “target model”,7,8 and at small

concentrations - by Waite using superposition decoupling in

hierarchies for Reduced Distribution Functions.9-11 Low

concentration of reactants means that the inequality takes

place 

, (1.1)

where Reff is the effective radius of the reaction (for example,

the rate constant for diffusion assisted reactions is defined by

the relation k = 4πReff D, where D is the relative diffusion

coefficient), while [A]t and [B]t are concentrations of the

corresponding reactants. Note that the smallness of concen-

tration of reactants in the development of a general theory of

reactions is also necessary because at high concentrations

the reactants move in solution the composition of which is

affected by the reaction. 

However, these approaches turned out to be inapplicable

in the investigation of dynamic physicochemical processes

(determined by the Hamiltonians) and reversible chemical

reactions. 

So to consider these processes in liquid solutions, the

approach has been proposed based on the fact that in the

case of a traditional treatment of a solvent as a continual

medium dilute solutions resemble a “gas” of reactants dis-

solved in a homogeneous chemically inert medium. So the

development of the kinetic theory of physicochemical pro-

cesses in solutions under condition (1.1) may be based12,13

on the analogy with the classical Collision Theory (CT) in

gases,14,15 when the reacting particles are for the most part in

the process of free walks in the bulk, and the reaction occurs

upon their collisions the characteristic duration of which is

essentially less than the mean time between them. 

However, unlike gases, the solvent, though chemically

inert, has a significant effect on the reaction course. On the

one hand, it often causes fast relaxation in a quantum system

of the interacting reactants, thus simplifying essentially the

quantum dynamics (including rotational one) of the event of

chemical conversion.16 In particular it results in the formation

of the elementary event rate (sink term). The coordinate q of

the configuration space in the general case includes space

coordinates of all reactants, their orientation angles and other

internal degrees of freedom (for example, vibrations, spin

states, etc.). Calculation of the rate w(q) (sink term) is a

separate problem of the elementary event theory.17-19 In the

kinetic theory of reactions depending on reactant mobility

the rate w(q) is considered to be given. Thus traditional

development of the theory of chemical reactions in solutions

ξ 4πReff

3
max A[ ]t, B[ ]t{ } << 1⋅≡
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is primarily based on its division into the theory of ele-

mentary event and the theory of reactions depending on the

mobility of reactants. 

By analogy with the classical Collision Theory, the theory

of quasi-resonance processes is also developed the dynamic

course of which (due to rather large relaxation times) is

determined by the interaction Hamiltonian, not by the

elementary event rate formed.12,13 

In constructing the theory one can also take into account

that the solvent complicates the character of reactants mobility

(as compared to gases) that is transformed to random walks.20

It is responsible for the “cage effect”21 which gives rise to a

new (as compared to gases) class of geminate reactions22

and complicates considerably the kinematics of “collision”

of reactants in liquid solutions. It acquires the character of

the encounter of reactants consisting of a sequence of re-

contacts.23 Thus the encounter means residence in the cage

(in this sense the reaction at the encounter may be con-

sidered as a geminate process). That is why the kinetic

theory of reactions (physicochemical processes) in solutions

based on the concepts of the classical Collision Theory

received the name “the Encounter Theory (ET)”.12,13 In the

framework of the Encounter Theory the reactants do not

react for the most part, as they are in the process of “free”

random walks in the bulk (a reservoir of free random walks),

and the reaction takes place upon their encounters the

duration of which is much less than the mean time between

them. Thus ET must correctly take into account all pair

encounters and neglect encounters of more particles en-

counters.

The Encounter Theory, just as the classical Collision

Theory and former theories of reactions in liquid solutions

based on the concept of independent pairs, gives differential

(rate) kinetic equations corresponding to the notions of

independent pair encounters. The independence of pair

encounters (just as the independence of pair collisions in

gases) means that the contributions to the reaction kinetics

from the encounters occurring at different instants of time

are additive. The specific feature of the Encounter Theory in

solutions, in comparison with the classical Collision Theory

in gases, is a much more pronounced non-Markovian

character of the theory (time dependence of rate constants)

that results in the deviations24-29 from the kinetic law of mass

action.30 Such a non-Markovian character of the theory (i.e.,

time dependence of rate constant) in ET concepts (unlike

non-stationary diffusion concepts in the Smoluchowski

theory) is due to the incompleteness of pair encounters on

the Gibbs ensemble (complete analogy with incompleteness

of collisions in the classical non-Markovian Collision

Theory). 

Note that the independence of pair encounters also means

the independence of “reservoirs” of free random walks and

the encounters. If a dependence takes place, correlations

accumulated during the encounters will be transferred to

reactants in free random walks in the bulk, and this will

inevitably result in correlations between sequential encounters.

From this point of view, the notion of independent pair

encounters in the irreversible reaction under consideration

(when concentrations of both partners vary) is questionable,

and at least needs substantiation. This is because the reaction

course determined by the encounters changing concentrations

of reactants affects the mean time of free random walks; this

can give rise to a connection between “reservoirs” of en-

counters and free walks in the bulk. In the classical Collision

Theory such a connection is weak (comparable to the

contribution of triple collisions). However, in solutions,

stochastic character of reactants motion (often treated as

continual diffusion) is responsible for long-range space-time

correlations.31 The reason is that for a reactant in solution

one cannot say for sure whether it is in a free walks in the

bulk or in the encounter with a partner (in the interval

between re-contacts). 

The concept of independent encounters can be examined

on the basis of many-particle consideration of the reacting

systems only, and the analysis of the concept for different

types of irreversible reactions is the main goal of the present

contribution. 

Statement of the Problem 

For irreversible reactions A + A → C and A + B → C the

non-Markovian binary kinetic equations are of the same

form both in ET and in the Waite-Smoluchowski theories 

(2.1)

and 

,  (2.2)

respectively, where K(t) is the non-Markovian rate constant

attaining its steady value (the Markovian rate constant or

steady-state constant)

.  (2.3) 

In this Markovian version of the theory Eqs. (2.1) and (2.2)

are transformed to the equation of formal chemical kinetics

corresponding to the law of mass action30 

(2.4)

and 

.  (2.5)

Note that we used reaction rate constant for reaction A + A

→ C that differs twice from that used in chemical literature.

It is more convenient for comparison of two considered

types of reactions. Eqs. (2.4) and (2.5) give the familiar

kinetics of bimolecular reactions at hand 

(2.6)
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for reaction A + A → C and 

(2.7)

for reaction A + B → C, where Δn = [B]t − [A]t = [B]0 − [A]0,

while [A]0 and [B]0 are initial concentrations of reactants.

For definiteness, everywhere below for the reaction A + B

→ C we take [B]0 ≥ [A]0 (Δn ≥ 0). 

In the frame of ET Eqs. (2.1) and (2.2) (as Eqs. (2.4) and

(2.5)) have a clear physical meaning. The product of concen-

trations in the right-hand side of the equations corresponds

to the approach of uncorrelated particles that are in the pro-

cess of free walks in the bulk, while the kinetic coefficients

(rate constants) specify the efficiency of the encounter of

reactants (that is the analog of collision efficiency (propor-

tional to the cross-section of scattering in gases, if by

scattering we mean chemical transformation)). 

To examine the applicability of the concept of independent

encounters that leads to Eqs. (2.1) and (2.2), we must derive

the kinetic equation for irreversible reaction considered on

the basis of many-particle consideration of the reaction

systems. 

If we use the many particle method for the derivation of

kinetic equations based on the Waite superposition decoupl-

ing,9,10 we really obtain the equations considered. However

it has been established that application of such an approxi-

mation to the derivation of non-Markovian binary equations

of reversible reactions32-34 contradicts the Encounter Theory

concepts when they are physically justified. The super-

position approximation was criticized in a number of

papers,35-38 and another approaches were developed in the

literature.35,37-42 In the context of any of these approaches the

general form of kinetic equations is convolution type integro-

differential ones in accordance with the kinetic theory of

chemical reactions43 and non-equilibrium statistical mech-

anics44

(2.8)

and 

. (2.9)

Specific expression for the kernel (memory function) Σ(t − t0)

should be obtained in the framework of the corresponding

approach. Note that the low limit −0 in the integrals should

to be used since the kernels contain δ(t − t0) singularity at

t = 0 in their kinetic parts.43 

For the calculation of the kernels the method37 based on

the adaptation of non-stationary quantum scattering theory

techniques45,46 and non-equilibrium statistical mechanics

methods44,47-51 to chemically reacting systems proved to be

most useful from the standpoint of the examination of the

Encounter Theory concepts. This method was successfully

used in the derivation of kinetic equations of a wide class of

chemical reactions52-60 and in examining the applicability of

the concepts of the Encounter Theory.61,62 Now we briefly

discuss the main steps of the method to show how the

subsequent steps increase the accuracy of kinetic equations

derived. 

The method consists of several steps beginning from the

many-particle statement of the problem to the final deriva-

tion of binary kinetic equations. The detailed microscopic

many-particle description of the reacting system and passing

to the thermodynamic limit make it possible to write hierar-

chies for Reduced Distribution Functions (RDF). Further

derivation of the equation of corresponding reaction relies

on the idea to treat the evolution of the reacting system as the

evolution of space-time correlations in spatial location of

reactants. The obtained hierarchies of equations for Corre-

lation Patterns (CPs) call for closing on some level. The sim-

plest method of such a closure is taking into consideration

just two-particle correlations between reactants neglecting

all three-particle ones. This approximation corresponds to

the development of the so-called Integral Encounter Theory

(IET) and leads to integro-differential kinetic equation. The

kernel of this equation calculated using the reacting pair

parameters is the basic kinetic coefficient of the theory that

completely describes the encounter. However, the kinetic

equation itself can be employed in a narrow time interval. To

expand the applicability range of binary description, it is

necessary to allow for correlation patterns of higher order

than two-particle ones. Closing of a hierarchy of equations

on the level of three-particle correlation patterns is imple-

mented by extracting binary channels in the evolution of

three-particle correlation patterns; this corresponds to the

next step in the many-particle derivation and the develop-

ment of the effective Pair Approximation (EPA). On the

basis of this approximation, discarding the terms beyond the

limits of binary approximation, we derive more general

integro-differential equation of the Modified Encounter

Theory (MET) valid over the entire time range of binary

description. However, the demerit of this theory is the

dependence of the kinetic coefficient (the kernel) on initial

concentrations of reactants. Within the accuracy of binary

approximation the kinetic equation of irreversible reaction

admit further reduction to the form of rate equation (Regular

form) that allows direct comparison with the Encounter

Theory. 

To discard the terms beyond the binary encounters ap-

proximation, the scaling procedure should be used.63 The

idea of the procedure is to enlarge the infinitively time-space

scale and to consider the scaling system with the infinitely

small concentration of reactants. This procedure that is

usually used to obtain the binary kinetics from the exact

kinetics calculated on the basis of many-particle considera-

tion of the reacting system can be used on the intermediate

stage of the derivation of the binary kinetic equations that

considerably simplified the consideration. For example,

transformation of any function  defining

the state of the pair in the initial system into the function

 that describes the same pair but in the

scaling-system has the form 

A[ ]t
m
 = 

Δn A[ ]0exp k– Δnt( )⋅
B[ ]0 A[ ]0exp k– Δnt( )–
----------------------------------------------------; B[ ]t

m
 = 

Δn B[ ]0⋅
B[ ]0 A[ ]0exp k– Δnt( )–
----------------------------------------------------

d A[ ]t
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------------ = −  
0–

t
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0

2
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,  (2.10)

where the scaling parameter . Since the encounters of

three and more particles correspond to a higher order of the

dilution parameter than the binary encounters it is necessary

to preserve just the lowest terms in power of the parameter

γ−1. Then we must put γ = 1 that corresponds to the desired

simplified function in the initial system. 

In this contribution we use the above methods in the

analysis of bimolecular irreversible reactions to refine physi-

cal concepts of the Encounter Theory. In the third section we

give the description of many-particle reacting systems. In

the forth and the fifth sections the kinetic equations of the

Integral Encounter Theory (IET) and the Effective Pair

Approximation (EPA) corresponding to different hierarchy

closure levels are obtained. In the sixth section one can find

the non-Markovian binary equations of the Modified

Encounter Theory (MET). In Section 7 the kinetic equations

in the final Regular Form (RF) are deduced and compared

with ET equations. Principal results of the work are given in

the Summary. 

Description of the Reacting System 

In the many-particle description of the irreversible react-

ing systems A + A → C and A + B → C we restrict ourselves

to the consideration of spatially homogeneous systems, and

first we neglect the initial correlations and the force inter-

actions between reactants considering them as a point

particles thus concentrating on the manifestation of chemical

correlations. Besides, for simplicity, by configuration space

coordinates q we mean space coordinates of reactants. 

Then their free motion in a continual medium is defined

by the Markovian process of random walks occurring in the

general case by random jumps of a finite length. Such a

motion is specified by the integral operator , where α

denotes the species of reactants, A or B. The elementary rate

of the irreversible reaction at hand is defined by the rate w(Ai

− Bj) depending on the relative-position vector  = A − B,

where Ai and Bj are the coordinates of the i-th reactant of A

species and the j-th reactant of B species, respectively. 

In our mathematical description, we shall use the extended

time interval  < t < . At t < 0 the values of all functions

are taken equal to zero, and at t > 0 these values coincide

with physical quantities. The functions are obtained by

multiplication of initial functions by the stepwise Heaviside

function θ(t). So differential equations do not require that

the initial conditions be stated. They are taken into account

by introducing δ-functional source in the right-hand side of

appropriate differential equation. This makes it possible to

consider space and time variables on equal terms which is

necessary for the introduction of integral operators acting on

the functions of space-time variables, and simplifying signi-

ficantly the intermediate calculations. Besides, for simpli-

city, further we shall denote the time derivative on the

extended time interval as . In such a formalism the

reaction operator  for any of the reactions considered has

the kernel 

.  (3.1) 

In the framework of such approach the general many-

particle method applied to the description of irreversible

reactions A + A → C and A + B → C37,38,61,62 allows to write

equations for the variation of A species concentration that

are defined by the lowest order equations of the hierarchy for

Correlation Patterns for the reaction A + A → C 

(3.2) 

and for the reaction A + B → C 

.  (3.3) 

Concentration variation rate of B reactants has a similar

form. The first terms in the right-hand sides of Eqs. (3.2) and

(3.3) are responsible for taking account of the initial

conditions, and the second terms describe the contribution

from uncorrelated encounter of two A reactants or A and B

reactants to the reaction rate. Accordingly, the third terms

describe the contributions from correlation in the position of

the same reactants which is specified by the correlation

patterns πAA  or πAB . In the general case these

patterns should be found from the closed set of equations

derived from the hierarchy for Correlation Patterns of the

reacting systems by the decoupling procedure that can be

performed on any hierarchy closure level.37,62,63 

The Integral Encounter Theory (IET) 

The simplest method of hierarchy closure is to take only

pair correlations into consideration neglecting the evolution

of any three-particle Correlation Patterns in the infinite

hierarchy. CPs of AA in Eq. (3.2) or AB in Eq. (3.3) reactants

for the reactions A + A → C or A + B → C hereinafter

denoted in this approximation as  and ,

respectively, obey similar closed equations 

(4.1) 

and

(4.2)

that differ from one another by relative motion and concen-

trations of the encountering reactants. 

Due to such a radical simplification of the equations for

two-particle CPs, their mathematical structure is easy to

find. Really, the solutions of both of these equations have the

following form in the Green function formalism 

(4.3)

and 

, (4.4)

where  and  are the propagators of the pairs AA or AB

the kernels of which are the probability densities to find the

reactants in the position  at the moment t if it was  at the

moment t0. These kernels obey similar equations for both

Φ̃ rA, rB, t, A[ ], B[ ]( ) Φ γrA, γrB, γ
2
t, γ 2–

A[ ], γ 2–
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2
 +  ∫ drv̂fπAA r, t( )
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reactions 

(4.5)

or

. (4.6)

On substitution of solution (4.3) in equation (3.2), and

solution (4.4) in equation (3.3) we have the desired kinetic

equations of the Integral Encounter Theory (IET) that are

integro-differential equations of the form of Eqs. (2.8) and

(2.9) (in the extended time interval) with similar kernels

(memory functions) 

. (4.7)

Here  is so called t-matrix 

.

(4.8)

We see from Eq. (4.8) that kernel (4.7) of kinetic equations

really contains the kinetic part with  singularity and

relaxing part (depending on the mobility of reactants). We

can see that t-matrix is the kernel of T-operator defined as 

,  (4.9)

where  is any of the propagators  or  (for the

corresponding reaction). It is obvious that T-operator and t-

matrix are the analogs64 of the corresponding objects of the

non-stationary quantum scattering theory,45,46 and this is

natural since the encounter in solutions is a prototype of

collision in gases. Thus the memory functions Σe(t − t0) that

for both reactions considered are expressed in terms of the

averaged evolution of the reaction pairs AA or AB com-

pletely describe a pair (binary) encounter of the correspond-

ing reactants. That is why IET is a binary theory, however,

further we shall show that it fails to completely allow for the

contribution of all binary encounters in concentration

variation and thus has an unjustifiably narrow time interval

of validity.25,65 

Nevertheless, it can be shown that the non-Markovian IET

reduces to the Markovian theory (that corresponds to the

kinetic law of mass action of the formal chemical kinetics).

For this purpose, it should be taken into account that the

characteristic time scale of the kernel decay Σe(t − t0) is of

the order of pair encounter duration of reactants in solution,

i.e., it has a microscopic time scale. In the zero approxi-

mation one can put pair encounter duration zero, and use δ-

shaped approximation for the kernel Σe(t − t0) (as scaling

shows25) 

, where k = . (4.10) 

As a result, the non-Markovian equations (2.8) and (2.9)

are reduced to the Markovian equations (2.4) and (2.5) with

the reaction rate constant (see Eqs. (4.10))

, where . (4.11)

Here the upper index s denotes the steady-state value of the

T-operator, and the upper index L is its Laplace transform

depending on the Laplace variable s. The obtained relation

between the Markovian (steady-state) rate constant and

stationary T-operator makes it possible to easily form the T-

matrix recipe for the calculation of the rate constant k in the

frame of stationary statement of the pair problem. 

Besides in IET applicability range the integro-differential

kinetic equations (2.8) and (2.9) may be brought into the

form of differential equations (2.1) and (2.2) of the En-

counter Theory (ET). With this aim, in the time convolution

one should neglect the change in concentrations of A and B

reactants in the characteristic variation range of the kernel Σe

putting  and . Then equations (2.8) and

(2.9) give IET kinetic equations in the desired differential

forms (2.1) and (2.2) of the Encounter Theory, where the

non-Markovian rate constant K(t) is introduced 

. (4.12)

It is a direct generalization of the definition of the Markovian

rate constant (4.11). 

The Effective Pair Approximation (EPA) and the 

Modified Encounter Theory (MET) 

The restricted time interval of the validity of the derived

kinetic equations indicates that the Integral Encounter Theory

(IET) fails to correctly allow for long-term transformations

of two-particle Correlation Patterns, since it ignores the reac-

tion with particles in the bulk. To take them into account, we

must close hierarchies on a higher level. Really, applying the

currently existing method for many-particle derivation of

kinetic equations based on the extraction of binary channels

from the evolution of three-particle Correlation Patterns37 to

the consideration of the reaction A + A → C, we can obtain

the equation for the evolution of CP of some effective pair61

(5.1)

and the equation for the evolution of some uncorrelated

effective pairs for the reaction A + B → C62 

(5.2)

The operators , , and  specify the translational

motion in the space of relative coordinates of the pairs of

AB, AA, and BB reactants, respectively. Note that similar

equations were also proposed in the literature in the

framework of euristic approach.66 

We see that in contrast to IET, in the frame of which the

evolutions of pair correlations are the same for both types of

reactions A + A → C and A + B → C, the evolutions of the

effective pairs for these two types of reactions drastically

∂t L̂AA– v̂f–( )gAA r, t|r0, t0( ) = δ r r0–( )δ t t0–( )

∂t L̂AB– v̂f–( )gAB r, t|r0, t0( ) = δ r r0–( )δ t t0–( )

Σ t t0–( ) Σe t t0–( ) = −  ∫ drdr0t r, t t0– |r0, 0( )≡

t r, t t0– |r0, 0( )

t r, t t0– |r0, 0( ) = −w r( )δ r r0–( )δ t t0–( )+w r( )g r, t|r0, t0( )w r0( )

δ t t0–( )

t̂ = v̂f + v̂f ĝv̂f

ĝ ĝAA ĝAB

Σe
t( ) k≅ δ t( )  

0–

∞

∫ dt Σe
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k = −  ∫ drdr0t
s
r|r0( ) t̂

s
 =  

0–

∞

∫ dt t̂ =  
s 0→

lim t̂
L
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A[ ]t
0

A[ ]t≅ B[ ]t
0

B[ ]t≅
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0–

t

∫ dτ Σe
τ( ) = −  

0–

t

∫ dτ  ∫ drdr0t r, τ |r0, 0( )

∂t L̂AA– v̂f 4k A[ ]t
2

+–( )πAA r, t( ) = v̂f A[ ]t
2

∂t L̂AB– v̂f k A[ ]t+ B[ ]t( )+–{ }πAB r, t( )

 = v̂f A[ ]t B[ ]t−k A[ ]tπBB r, t( )+ B[ ]tπAA r, t( )( )

∂t L̂AA– +2k B[ ]t( )πAA r, t( ) = −2k A[ ]tπAB r, t( ),

∂t L̂BB– +2k A[ ]t( )πBB r, t( ) = −2k B[ ]tπAB r, t( ).⎩
⎪
⎪
⎨
⎪
⎪
⎧

L̂AB L̂AA L̂BB
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differ. 

For the reaction A + A → C it is the evolution of one

chemically interacting effective pair that decays due to the

translational motion of reactants and their chemical inter-

actions with the same reactants at encounters and in the bulk.

Note that the decay of the Correlation Pattern due to the

interaction with the bulk reactants proceeds in half the time

(at the rate 4k[A]t) than the corresponding decay of concen-

trations  in the bulk (at the rate 2k[A]t) due the pair

encounters. We can see that the solution of Eq. (5.1) differs

from solution (4.3) of Eq. (4.1) only by the exponential

factor exp( ). Within the accuracy of the binary

theory, in this exponential factor we can replace the kinetics

[A]t by its Markovian kinetics . Thus we immediately

obtain from Eq. (3.2) the final kernel of binary kinetic

equation (2.8) of the reaction A + A → C valid (unlike IET)

over the entire time interval of binary kinetics 

. (5.3) 

It is seen that the kernel derived is the modification of IET

kernel (that contains complete information about the

encounter) by multiplying it by the factor that depends on

steady-state (Markovian) reaction constant (that, in turn,

apart from initial concentration, is determined by IET kernel

itself (see Eq. (4.10))). That is why the approximation thus

constructed for the reaction A + A → C is called the

Modified Encounter Theory (MET). By identity transfor-

mation, this kernel can be rewritten in an equivalent form

(5.4)

where 

. (5.5)

In this representation the first term in r.h.s of Eq. (5.4) is

the product of IET kernel that describes the reaction

dynamics at the encounter and the Markovian reaction

kinetics =  that describes the

macroscopic reaction dynamics (in the time interval from t0
to t) in the bulk. It corresponds to the independence of these

two dynamics. Thus the second term in r.h.s of Eq. (5.4)

ΛAA(t|t0) (5.5) describes macroscopic correlation between

these two dynamics. Calculation of this correlation term

(5.5) with allowance only for the leading term of the expan-

sion in the scaling parameter (sufficient in the binary theory)

permits the use of IET memory function on meso-and

macroscales25

, (5.6)

where  is the relative macrodiffusion coefficient of A

reactants. The first term of this approximation corresponds

to the Markovian approximation (4.10) and is the leading

term of the expansion in the scaling parameter. The second

non-Markovian term corresponds to the next order of this

parameter. Since the contribution from the Markovian term

in Eq. (5.5) is equal to zero, the leading non-zero term in Eq.

(5.5) is determined by the second (non-Markovian) term in

expression (5.6). Thus ΛAA(t|t0) depends only on  macropara-

meters (k,  and initial concentration) as should be. 

However, accumulation of macroscopic correlations is

more complicated for the reaction A + B → C when the

subsequent evolution of three interrelated correlation patterns

takes place. It leads to the decay of CP πAB of the reacting

pair not only due to the translational motion of reactants and

their chemical interactions with each other and with reactants

in the bulk, but due to the transformation of different Corre-

lation Patterns into each other. Two of CPs are Correlation

Patterns of chemically not interacting identical particles.

Generally speaking, such a transformation of CPs can occur

not only on the immediate approach of reactants (at binary

encounter times), but also at rather large times, when reac-

tants A and B are separated by meso-and macro-distances,

however, correlation between them persists. Additional

transformation of all CPs is due to reaction with particles in

the bulk. Thus macroscopic correlations of both reacting

particles and non-reacting species of the same type are

accumulated in the system. This inevitably affects the evolu-

tion of the Correlation Pattern πAB defining, according to Eq.

(3.3), chemical conversion rate. The derived set of EPA

equations is rather intricate. In solving it, one should take

into consideration that the evolution of the CP πAB is not

governed solely by the evolution  of independent react-

ing particle (as in IET), i.e., EPA is not the binary theory. For

some reactions this approximation can describe fluctuation

tails of the kinetics realized beyond the limits of the binary

theory.66 Thus to obtain the desired solution, one has to

extract the binary evolution from the evolution of two-

particle correlation patterns of EPA. Apart from replacing

the kinetics [A]t and [B]t by their Markovian kinetics 

and  in Eqs. (5.2) some mathematical tricks and

application of the scaling procedure are required to obtain

the desired solution. As a result we obtain the final kernel of

binary kinetic equation (2.9) of the reaction A + B → C valid

(in contrast to IET) over the entire time interval of the binary

kinetics 

(5.7)

where 

 (5.8)

Here  is macrodiffusion free propagator (in

absence of reaction) that obeys Eq. (4.6) at , and

,

(5.9)

and  is the corresponding matrix
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element of the free propagator of the effective pair that

obeys the matrix equation 

, (5.10)

where ,  and  are relative macrodiffusion

coefficients, and E3 is a three-dimension unity matrix. 

Eq. (5.7) similar to Eq. (5.4) contains two terms the first of

which describes independent reaction dynamics at the en-

counter and in the bulk ,

and the second term describes  correlation between the

dynamics. Thus we see that the derived kernel (5.7) can be

formed using IET kernel that contains complete microscopic

information about the encounter and the knowledge of the

macroscopic kinetic parameters (the Markovian rate con-

stant, relative macrodiffusion coefficients of reactants and

initial concentrations). Thus it is really the Modified En-

counter Theory (MET). 

Calculation of the free propagator of the effective pair is

the most di.cult part in the construction of MET kernel (to be

more exact, in the calculation of the correlation part ΛAB),

and will be presented in this paper for the case of equal

macrodiffusion coefficients of the species = .

However, when B reactant is in excess, it is possible to

pass to the limit in Eqs. (5.7), (5.8), and (5.10)

 (5.11) 

In this case

(5.12)

and ΛAB(t|t0)=0. Then MET memory function (5.7) reduces

to the familiar expression38,66 

Σ(t|t0) = Σe(t|t0) exp (−k[B](t − t0)), (5.13) 

corresponding to the independent dynamics. 

Regular Form of MET Kinetic Equations 

(The Generalized Encounter Theory (GET)) 

Equations of the Modified Encounter Theory (MET)

derived are the final form of integrodifferential binary

kinetic equations valid over the entire time range of binary

kinetics. However, for irreversible reactions considered they

can be transformed into an equivalent differential form

(Regular form that is more familiar to chemists) using the

time shift rule37,54 valid within the accuracy of binary

encounter approximation. For the reactions A + A → C and

A + B → C they are 

(6.1) 

and 

; ,

(6.2) 

respectively. They differ from the identities that follow from

the non-Markovian kinetic equations (2.1) and (2.2) in that

equations (6.1) and (6.2) involve the exact kinetics ,

, , and  at different moments of time but the

kinetics in the interval [t, t0] are approximated by the

Markovian kinetics. 

As a result, the initial MET equations take a Regular Form

of differential kinetic equations. For the reaction A + A → C

we obtain 

(6.3)

with the source 

(6.4) 

and for the reaction A + B → C 

(6.5)

with the source 

(6.6)

Note that in the calculations of the sources (6.4) and (6.6) we

used Markovian kinetics  and  that is possible

within binary theory accuracy. It is seen that the extension of

the time validity range of the kinetic equations achieved in

MET not only widens the time applicability range of differ-

ential equations of the Encounter Theory derived from IET

but discovers additional inhomogeneous sources. The kinetic

equations of a such structure are known in the theory of

irreversible chemical reactions,10 but the sources take into

account initial space correlations in many-particle systems.

However, the presence of the sources JAA(t) or JAB(t) in Eqs.

(6.3) and (6.5) are not related to initial space correlations,

since they are equal to zero at the initial moment of time.

Written in the forms 

(6.7)

and 

(6.8)

with initial conditions [A]t=0 = [A]0 and [B]t=0 = [B]0. Eqs.

(6.7) and (6.8) show the presence of macroscopic corre-

lations of reactants in the process of free random walks in

the bulk. Thus the encounters in dilute solutions (except the

case of B reactants in excess in the reaction A + B → C) are

dependent in contrast to collisions in gases. The Encounter
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Theory taking account of dependent encounters can be

considered as the Generalized Encounter Theory (GET). 

The macroscopic correlations are described by the corre-

lation patterns 

(6.9)

and

(6.10)

Note that when transforming sources (6.4) and (6.6) in Eqs.

(6.3) and (6.5) into the correlation patterns in Eqs. (6.7) and

(6.8), we put , which is possible within the required

accuracy. 

Now consider the reaction A + B → C in the case of equal

mobilities of species A and B (is this case  =  = )

and equal initial concentrations [A]0 = [B]0 that are equal to

the concentration of species A in the reaction A + A → C. In

this case, in the framework of the Encounter Theory (and the

formal chemical kinetics), the kinetics of both reactions A +

A → C and A + B → C (at equal elementary event rates) are

the same. However, manifestations of macroscopic corre-

lations are absolutely different. Really, the quantity 

in the correlation pattern  is61

,

;  (6.11)

and demonstrates the time behaviour shown in Figure 1(a). 

For reaction A + B → C in this case solution to Eq. (5.10)

(at  = )62 is 

(6.12)

and from Eq. (6.6) we have 

 (6.13)

Then from Eqs. (2.6), (5.9) and the definition =

εχAB(x), where x = k[A]0t we obtain the quantity
62

(6.14)

that demonstrates the time behaviour shown in Figure 1(b). 

It is seen that accumulation of macroscopic correlations in

the reservoir of free walks of reactants in the bulk due to

their encounters for the reaction of identical particles A + A

→ C occurs at characteristic mesotimes: (0.19τf ) while for

the reaction of different particles A + B → C it proceeds

slower (0.8 τf). However, the most drastic difference is that

correlation patterns for the reactions considered are of the

opposite sign. For the reaction A + A → C macroscopic

correlations accelerate the reaction, but for the reaction A +

B → C they inhibit it. 

Then after the attainment their maximum values the

macroscopic correlations decay due to the encounters and

disappear at all at large times. The time τf =(k[A]0)
−1 may be

identified with the mean time between sequential encounters

of reactants (it is the analog of a free pass time in gas phase

reactions). The times of the order of τf are macroscopic.

Nevertheless, macroscopic correlations affect the non-

Markovian tails of the kinetics. Figure 2 shows the non-

Markovian part of GET kinetics in relative units (relative

deviation of the non-Markovian GET from the Markovian

one) for the parameter value ε = 0.067 depending on the

dimensionless time x = k[A]0t = t/τf 

. (6.15)

The Influence of the force Interactions and the Decay 

of Reactants on Macroscopic Correlations 

The force interactions between reactants (and products)

give rise to additional correlations that affect the reactions

course. To take them into account, note that the influence of

the force interactions in the framework of the Encounter

Theory based on the conception of independent pair en-

counters is physically evident. Really these interactions

should be allowed for just in the reacting pairs of the

encountering particles A with A and A with B only, since the

influence of the interactions of the reacting pairs AA or AB

with other particles (including products C) are insignificant

in the ET making allowance for two-particles encounters

only. Since force interactions make influence on the relative

motion in the corresponding reacting pair they should be

included in the operator  of the relative motion of the

corresponding pairs or in the propagator  in Eqs. (4.8) and

(4.9) thus changing in the well-known manner the kinetic

coefficients Σe(t), k or K(t) of IET or ET. 

However, even at small density parameters, taking into

account the above force interactions in the more general

GET theory (in calculation of the source terms) that con-

siders the dependence of pair encounters of reactants in

solution determined by the contribution of three-particle
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Figure 1. Time behaviour of functions χAA(x) Eq. (6.11) (curve a)
and χAB(x) (curve b) Eq. (6.14).
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correlations into the kinetics is not so apparent. In this case

the interactions of reactants with with each other and with

product particles C can, in principle, affect the accumulation

of macroscopic correlations. Nevertheless, some physical

arguments can be used to answer the question. Really, as

it seen from the foregoing, macroscopic correlations are

essential on meso-or macroscopic time-space scale depend-

ing on macroscopic kinetic parameters only. Thus micro-

scopic evolution determines only these parameters and

additional influence of microscopic force interactions on the

considered macro-scale can hardly take place. Exact consi-

deration including the force interaction in many-particle

model of A + A → C reaction from the very beginning

supports the given arguments.61 Exact consideration of the

corresponding model for the reaction A + B → C will be

done elsewhere. 

Let us consider reaction A + A → C of nonstable reactants

A with lifetime τA. Since the decay of reactants in the

irreversible reactions considered does not influence on the

reaction rate constant K(t) and k (as is seen from further

consideration) the Markovian kinetic equation is 

(7.1)

and gives

(7.2)

Equation EPA for the Correlation Pattern  can be

written as 

(7.3)

and differs from Eq. (5.1) by additional term on l.h.s. Then

the kernel of integro-differential MET kinetic equation

differs from Eq. (5.3) by additional exponential factor only

(7.4)

as every term in representation (5.4) and expression (5.5).

Using now new time shift rule 

(7.5)

we obtain

(7.6)

with the previous definition (4.12) of non-Markovian reac-

tion rate constant and definition of inhomogeneous source

by the second of Eqs. (6.4), where new Markovian kinetics

(7.2) instead of kinetics (2.6) should to be used. Then for

χAA(k[A]0t) ≡ φAA(y), where y = ηx = k[A]0ηt we obtain 

, (7.7)

where we introduce parameter η = (k[A]0τA)
−1 and function

.

(7.8)

Here 

(7.9) 

is Doson integral67 and Φ(iy) is error function of imaginary

argument. Using that 

 (7.10)

we obtain from Eq. (7.7) at y = k[A]0ηt << 1 expression for

χAA(k[A]0t) that coincides with the corresponding expression

in Eqs. (6.11). At η → 0 (absence of reactants decay) as it

should be. But the most surprising is the fact that the

expression just derived at k[A]0ηt << 1 is valid at arbitrary η

values. It means that at the initial stage the reactants decay

does not influence on the accumulation of macroscopic

correlations and induces additional decay of macroscopic

correlations at sufficiently large times only. At k[A]0ηt >> 1

we obtain from Eqs. (7.10) and (7.7) 

.  (7.11)

Note that apart from the exponential decay due to reactants

non stability additional power law decay (k[A]0t)
−3/2 due to

encounters takes place. However this power law does not

coincide with corresponding power law (k[A]0t)
−5/2 for stable

reactants (see Eq. (6.11)), i.e. demonstrates slower power

decay. As a consequence at η = 0 asymptotic term consider-

ed vanishes and one must calculate the next one. 

The time behaviour of χAA(k[A]0t) (7.7) is shown in Figure 3.
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Figure 2. Time behaviour of the relative deviation (6.15) of the
non-Markovian GET kinetics from the Markovian one (2.7) for ε
= 0.067: curve a -for kinetics GET of reaction A + B → C obeying
Eq. (6.5); curve b -for kinetics GET of reaction A + A → C
obeying Eq. (6.3).
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equations for Correlation Patterns read 

(7.12)

In the general case it is di.cult to solve these equations and

we restrict ourselves to the particular case of equal lifetimes

τA = τB. Then the equations differ from Eqs. (5.2) by similar

additional terms on l.h.s. and it can be immediately seen that

the kernel of integrodifferential MET kinetic equation differs

from kernel (5.7) by additional exponential factor

 only as for reaction A + A → C. Thus in a

similar way we conclude that the source JAB in the equation

of GET 

 (7.13)

differs from source (6.13) in changing Markovian kinetics

 (2.6) by new Markovian kinetics (7.2). Thus for φAB(y)
≡ χAB(k[A]0t) we obtain 

(7.14)

where y = k[A]0ηt and 

(7.15) 

Properties of this function are investigated in Appendix. At

η → 0 we obtain the previous result (6.14) as it should be. At

long times using asymptote g(y) at y → 

(7.16)

we have 

(7.17)

We see that as in the reaction A + A → C apart from the

exponential decay (due to finite lifetime of reactants) the

additional power law decay (due to encounters) takes place.

However in contrast to the reaction A + A → C in the

reaction A + B → C power laws are the same for stable and

nonstable reactants. Really at η = 0 Eq. (7.14) reproduces

the same power law (k[A]0t)
−3/2 as follows Eq. (6.14) at

large times. The time behavior of χAB(k[A]0t) is shown in

Figure 4. 

At η ≥ 1 and k[A]0t ≅ 1 the inhomogeneous terms respon-

sible for the accumulation of macroscopic correlations

become exponentially small. At k[A]0t << 1, when the ex-

ponential decay is negligible, the inhomogeneous terms are

also small, since macroscopic correlations are not accumu-

lated during that short times. Thus in this case, the accumu-

lation of macroscopic correlations should be neglected at all,

and the Encounter Theory based on the concept of

independent encounters may be used. 

Summary 

Based on the non-Markovian kinetic equations derived in

the literature using the currently existing many-particle

method for the derivation of non-Markovian binary kinetic

equations, we have analyzed the Encounter Theory (ET)

notions for the widely occurring diffusion assisted irrever-

sible bulk reactions A + A → C and A + B → C in dilute

solutions for arbitrary ratio of initial concentrations of reac-

tants. 

The Encounter Theory which is the analog of the Collision

Theory in gases considers the reactants in solution as a gas

placed in chemically inert continual medium. According to

these concepts, the reactants are for the most time in the

∂t L̂AB– v̂f k A[ ]t+ B[ ]t( )+– +1/τA+1/τB( )πAB r, t( )

 = v̂f A[ ]t B[ ]t−k A[ ]tπBB r, t( )+ B[ ]tπAA r, t( )( )

∂t L̂AA– +2k B[ ]t+2/τA( )πAA r, t( ) = −2k A[ ]tπAB r, t( )

∂t L̂BB– +2k A[ ]t+2/τB( )πBB r, t( ) = −2k B[ ]tπAB r, t( ).⎩
⎪
⎪
⎨
⎪
⎪
⎧

exp
2 t t0–( )
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Figure 3. Time behaviour of functions χAA(x) (7.7) for different
values of η = τf/τA.

Figure 4. Time behaviour of functions χAB(x) (7.14) for different
values of η = τf/τA.
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process of free random walks, and the reaction takes place

on their encounters (the analog of collisions) the charac-

teristic duration of which is essentially less than the mean

time between them. Under such conditions, the encounters

(as well as collisions in gases) were traditionally treated as

independent (i.e., the effects of the encounters occurring at

different instants of time are uncorrelated, and therefore

additive). 

As in gases, these concepts lead to differential kinetic

equations (rate equations) differing from formal chemical

kinetics equations based on the kinetic law of mass action

just in the time dependence of the rate constant at the initial

stage of the reaction. Note that the familiar Waite super-

position decoupling yields the rate equations (Smoluchowwski

type equation) corresponding to the Encounter Theory con-

cepts of the independence of pair encounters of reactants in

solution. 

However, in contrast to collisions, the encounter consists

of a series of re-contacts among which there can be contacts

of reactants separated by essential distances (spatial meso-

scale). In this case if the reaction causes the change in the

mean time of free walks due to reactant concentration

variation in the course of the reactions A + A → C and A + B

→ C (except the case of B reactants in excess), then it is to

lead to the relation between the encounter reservoirs and free

random walks in the bulk. In other words, the encounters of

reactants will be correlated, and this is to affect the form of

kinetic equations with allowance for macroscopic correlation

accumulation in the reservoir of free walks. 

The analysis of the non-Markovian binary kinetic equations

of the reactions derived on the basis of many-particle consi-

deration of the reacting systems shows that the agreement

with the Encounter Theory takes place when the Integral

Encounter Theory (IET) is used which in this method is just

a step in the derivation of kinetic equations. It allows solely

for two-particle correlations, and fails to consider reactant

correlation simultaneously with the encounter partner and

reactant in the bulk. Hence it has a restricted time range of

validity where the above correlations are insignificant. 

However, the next step in the derivation of kinetic equa-

tions resulting in the final binary kinetic equation of the

Modified Encounter Theory (MET) not only extends the

applicability interval of the theory to the entire interval of

binary kinetics and, but in full agreement with the above

physical arguments, reveals macroscopic correlations induced

by the encounters in the reservoir of free walks in the bulk.

First these correlations increase with the increasing number

of the encounters but then they decay under the action of the

encounters in accordance with the familiar assertion concern-

ing correlation decay. This means that the encounters of

reactants in solution become correlated on a rather long time

interval of the reaction course. It is reasonable to call such a

non-Markovian theory (final MET equations written in the

Regular form) taking account of dependent pair encounters

the non-Markovian Generalized Encounter Theory (GET).

In a particular case of the reaction A+B → C with equal

mobilities of A and B species (in this case  =  = )

and equal initial concentrations [A]0 = [B]0 that are equal to

the concentration of A species in the reaction A + A → C

kinetics in the framework of the Encounter Theory (and

formal chemical kinetics) of both reactions A + A → C and

A + B → C (at equal elementary event rates) in the frame-

work of the Encounter Theory (and formal chemical kinetics)

are the same. However, the kinetics of both reactions in the

context of GET differ due to different manifestations of

macroscopic correlations. 

In the reaction A + B → C accumulation of macroscopic

correlations proceeds slower as compared to the reaction A

+ A → C of identical reactants. The reason is that in this

reaction conservation of the correlations arising in the

reaction pair AB occurs due to their transfer into reactionless

pairs AA and BB. Accumulation of macroscopic correlations

in the reaction A + A → C accelerates the reaction, while in

the reaction A + B → C it inhibits chemical transformation.

The force interactions between reactants do not change the

character of time dependence of additional sources respon-

sible for the macroscopic correlations accumulation and

refines the macroscopic steady-state parameters only. 

For non-stable reactants, the initial stage of the accumu-

lation of macroscopic correlations does not depend on the

lifetimes that is in accordance with the known fact that in

irreversible reactions the decay of reactants does not affect

the kinetic coefficients. The decay of non-stable reactants

manifests itself only on macroscopic time scale (between

sequential encounters) leading to additional (to the decay

due to the encounters) exponential decay. But for the

reaction A + A → C of identical particles A + B → C, in

contrast to the reaction A + B → C, the internal decay

changes the power law (responsible for the decay due to the

encounters) that becomes slower than for the corresponding

reaction of stable species. 

In the case where the decay time is less or of the order of

time between the encounters, accumulation of correlations

may be neglected, and the Encounter Theory (based on the

concept on the independence of pair encounters) can be used

over the entire range of binary kinetics. 

In the general case, the non-Markovian kinetics due to the

accumulation of macroscopic correlations manifests itself at

fairly long times when reactants decayed deeply in the pro-

cess of chemical reaction. Thus for practical investigation of

chemical kinetics the Encounter Theory may be employed.

However, the existence of the accumulation of the macro-

scopic correlations is principally important, since it can

manifest itself in the experiments where long time tails of

the kinetics play a dominant role in the formation of experi-

mentally observed phenomena (for example, Chemically

Induced Nuclear Dynamic Polarization (CIDNP) at weak

singlet-triplet mixing or the kinetics of multistage reactions,

when the long time kinetics of the intermediates play the

decisive role in the formation of the products observed). 
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Appendix: Investigation of the Function g(y) 

The function g(y) (7.15) diverges at η → 0. In this case y

→ 0, but x = k[A]0t can be of a finite value. Let us change the

integration variable z to the variable τ =  and obtain 

. (A1)

Calculation of the integral in Eq. (A1) gives the desired

expression. 

For searching the asymptotic behavior of g(y), let us

represent it changing the integration variables in an equi-

valent form and put η >> 1 

. (A2)

Calculations of the integrals in r.h.s of Eq. (A2) give the

desired expansion (7.16). 
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