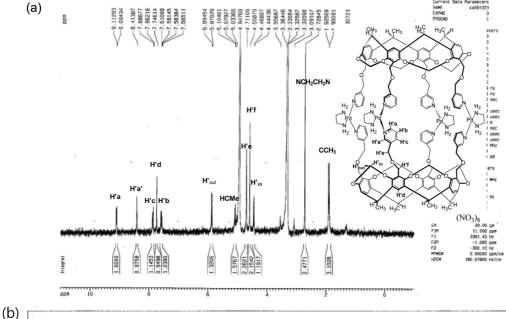
Supplementary Materials


Kinetically Trapped Receptor and its Thermodynamic Conversion During Metal-mediated Self-assembly

Choon Woo Lim, †,* and Jong-In Hong*,*

†Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Gyeonggi-do 449-701, Korea *E-mail: choonwoo.lim@khu.ac.kr

*Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea *E-mail: jihong@snu.ac.kr

Received December 8, 2010, Accepted December 28, 2010

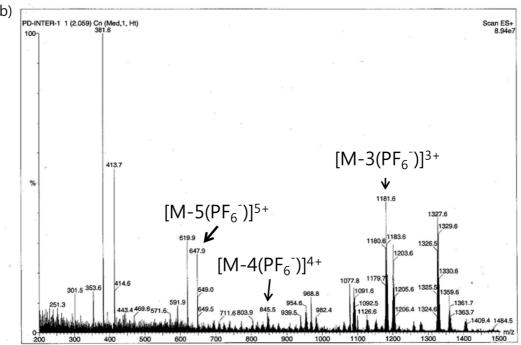


Figure S1. (a) ¹H NMR (300 MHz, CD₃OD) spectrum and (b) ESI MS spectrum **Pd-inter**.

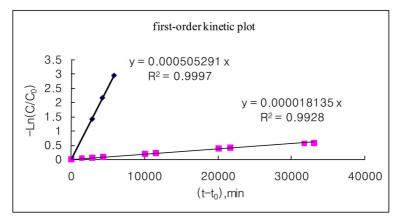


Figure S2. Kinetic data of the conversion of Pd-intra into Pd-inter in MeOD-d₃ (◆) and in a mixture of MeOD-d₃/D₂O (1:1, v/v, ■).

¹H NMR experiments were performed using a Bruker Avance 500 spectrometer (500 MHz). Kinetic parameters were evaluated on the basis of time-dependent ¹H NMR measurements using the α - or β -proton of pyridyl groups as probes. The concentration ratio, *i.e.*, the ratio of [**Pd-intra**]_t to [**Pd-intra**]₀, was calculated from the relative integration of the **Pd-intra** signal obtained at a given time and the initial **Pd-intra** signal during ¹H NMR measurements performed at definite time intervals.

If the conversion follows first-order kinetics and the volume of the system remains essentially constant during the conversion process, the first-order rate equation can be written as

$$-dc/dt = kc (1)$$

If the concentration is c_0 at time t=0, and decreases to c at time t, the integration (being carried out between c_0 and c) gives

$$-\int dc/c = k \int dt$$
 (2)

$$\ln(c_0/c) = kt \tag{3}$$

The graph of t versus $ln(c_0/c)$ shows a straight line with a slope k. From this graph, we can estimate the rate of conversion of **Pd-intra** into **Pd-inter** at room temperature (298 K).