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In this study, we have developed QSAR models for a series of 38 piperidine-4-carboxamide CCR5 antagonists using 
CoMFA, CoMSIA and HQSAR methods. Developed models showed good statistics in terms of q2 and r2 values. Best 
predictions obtained with standard CoMFA model (r2 = 0.888, q2 = 0.651) and combined CoMSIA model (r2 = 0.892, 
q2 = 0.665) with electrostatics and H-bond acceptor parameter. The validity of developed models was assessed by test 
set of 9 compounds, which showed good predictive correlation coefficient for CoMFA (0.804) and CoMSIA (0.844). 
Bootstrapped analysis showed statistically significant and robust CoMFA (0.968) and CoMSIA (0.936) models. Best 
HQSAR model was obtained with a q2 of 0.662 and r2 of 0.936 using atom, connection, hydrogen, donor and acceptor 
as parameters and fragment size (7-10) with optimum number of 6 components. Predictive power of developed HQSAR 
model was proved by test set and it was found to be 0.728.
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Figure 1. Chemical structures of several known CCR5 antagonists.

Introduction

Human Immunodeficiency Virus type-1 (HIV-1) infection, 
which eventually leads to the acquired immunodeficiency synd-
rome (AIDS), was first discovered by Barrae et al in 1983.1 At 
present, AIDS remains to be a lethal disease threatening hu-
man’s health especially sub-Saharan Africa and Southeast Asia. 
The chemokine receptor CCR5 has proven to be an exciting 
target for pharmaceutical industry in the HIV-1 and inflamma-
tion therapeutic areas. This fact inspired a great amount of 
research in last decade to identify anti HIV-1 therapeutic by 
targeting the CCR5 mediated entry mechanism. This effort 
recently resulted in FDA approval for small molecular inhibitor, 
Maraviroc (Selzentry) for the treatment of HIV-1 infection.2 
HIV primarily infects vital cells in the human immune system 
such as helper T-cells (specifically CD4+ T-cells), macrophages 
and dendrite cells.3-5 HIV enters into these cells by adsorption 
of viral glycoprotein to receptors on the target cell. This step is 
followed by the fusion of viral envelope with the cell mem-
brane and release of the HIV capsid into the cell.6-7 HIV in-
fection leads to low levels of CD4+ T-cells through three main 
mechanisms: Firstly, direct viral killing of infected cells; second-
ly, increased rates of apoptosis in infected cells; and thirdly, 
killing of infected CD4+ T-cells by CD8 cytotoxic lymphocytes 
that recognize infected cells. CCR5 receptor is a member of 
G-Protein coupled receptors (GPCR) superfamily.8,9 It has 
been identified as a primary co-receptor on CD4+ cells for 
entry of macrophage-tropic (M-tropic or R5) HIV-1 isolates.10 

Few natural ligands (MIP-1a, MIP-1b and RANTES) have been 
identified for CCR5.11 Currently, there is an only few small 
molecular inhibitors are being investigated as anti-HIV-1 agents 
in human clinical trials12-17 and shown in Figure 1. To date, only 
one drug Maraviroc (Selzentry) was approved by FDA on Au-
gust 6th 2007. Still, they raised concerns that it may be associated 
with serious complications such as liver damage, lymphoma, 
infections and heart attack.

Literature survey showed that previously 3D-QSAR and 
virtual screening studies of CCR5 antagonists 1-(3,3-diphenyl-
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Table 1. Structures and biological activity values of piperidine-4- 
carboxamide derivatives (Series-1)

N N

O

R1 3

4

N N

O

N
Me

1

O

Compound R1 Position pIC50

1 6.31
5a* Cbz 4 7.32
6a H 4 5.37
7a* Ac 4 7.78
7b i-PrCO 4 7.41
7c Bz 4 7.48
7d Ms 4 7.40
5b Cbz 3 5.92
6b H 3 6.10
7e* Ac 3 6.17
7f* Ms 3 6.74

Asterisk (*) indicates test set compounds.

Table 2. Structures and biological activity values of piperidine-4- 
carboxamide derivatives (Series-2)

N N

O

R1

R3

3
4

R2

Compound R1 R2 R3 pIC50

5c Ac 3-Cl F 8.52
5d Ac 4-Me F 8.55
5e Ac 3,4-diCl H 8.72
5f Ac 3,4-diCl F 8.92
5g Ac 3-Cl, 4-Me H 9.20
5h Ac 3-Cl, 4-Me F 9.54
5i Ac 3-Cl, 4-i-Pr F 7.74
5j Ac 3-Cl, 4-MeO F 7.52
5k Ms 3,4-diCl F 8.48
5l Ms 3-Cl, 4-Me F  9.30

propyl)-piperidinyl amides have been performed by Aher et 
al. and Afantitis et al.18,19 They shows that for high affinity bind-
ers key chemical and structural requirement can be identified 
using physicochemical parameter, topological property and 
3D field such as steric, electrostatics, hydrophobic, hydrogen 
bond donor/acceptor around a set of aligned ligand molecules. 
3D-QSAR models, CoMFA and CoMSIA on a series of piperi-
dine-based CCR5 antagonists have been developed by Song 
et al.20 Whereas, Y. Zhuo et al performed 3D-QSAR study for 
1,3,4-trisubstituted pyrrolidine based CCR5 inhibitors.21 An 
excellent work docking and 3D-QSAR study on 1-amino-2- 
phenyl-4-(piperidin-1-yl)-butanes derivatives was done by 
Xu et al.,22 where they developed homology model for CCR5, 
and docking based conformations of all molecules were used 
for 3D-QSAR model generation. 

There has been need for developing newer, selective and 
potent inhibitors of CCR5. A successful 3D-QSAR model not 
only helps in better understanding of structure activity relation-
ship data for any class of compounds, but also ensure researcher 
an in depth analysis of lead compounds in further studies. Here, 
we have chosen a series of piperidine-4-carboxamide deriva-
tives containing potent and selective CCR5 functional antago-
nists.23 Hence, we started CoMFA,24 CoMSIA25 and HQSAR26 
studies as validation tools for QSAR analysis of CCR5 inhi-
bitors. CoMFA and CoMSIA are the methods which are used 
in rational drug design. To develop novel antagonistic agents 
with high potency and selectivity, detailed information is requir-
ed about structural features influencing biological activity 
towards CCR5 receptor. Since the crystal structure of CCR5 
or its complex with any ligand is not available, the interactions 
between the CCR5 receptor and its antagonists are not known. 
Correlation between the structural properties of compounds with 
their biological activities is believed to gain an insight into the 
interaction mechanisms of CCR5 to antagonists. This could pro-
vide useful information for designing novel anti-HIV-1 drugs. 
CoMFA and CoMSIA analyses involve alignment of molecules 
in a structurally and pharmacologically reasonable manner on 
the basis of assumption that each molecule acts via common 
macromolecular target binding site. Since there is no experi-
mental structure was reported, HQSAR analysis was also done 
which does not require-3D structure, bioactive conformation 
and molecular alignment. It generates QSAR equation by mole-
cular fragments fingerprints as independent variable and bio-
logical activity as dependent variable. 

Computational Details

Dataset. Dataset used in this study comprised of piperidine- 
4-carboxamide derivatives reported as potent CCR5 inhibitors 
by Imamura et al.23 The binding affinities of given antiretroviral 
concentration in nano-molar (nM) range were converted to 
the molar (M) concentration and then converted to logarithmic 
scale for further analyses on dataset, using the following for-
mula.

pIC50  =  -log IC50

Where, IC50 is concentration of antagonist to provide 50% 

inhibition of CCR5 receptor. Consequently we used 38 piperi-
dine-4-carboxamide derivatives with their activities (Table 1-4) 
to establish QSAR models. Total dataset was divided randomly 
into a training set of 29 compounds and test set (wide range of 
activity) of 9 compounds.

Molecular modeling. All computational studies were per-
formed using molecular modeling package SYBYL 8.127 install-
ed on a Linux system. Since crystal structure of CCR5 with any 
ligand is not available, the most active molecule 5h (IC50 = 0.29 
nM, pIC50 = 9.53) was considered as a template molecule and 
random search method was carried out to obtain least energy 
conformation. Least energy conformation was considered as a 
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Table 3. Structures and biological activity values of piperidine-4- 
carboxamide derivatives (Series-3)

N N

O

F

O

Me

CH2 n

Cl

Cl

Compound n pIC50

12 4 7.28
18 2  6.31

Figure 2. Molecular alignment of all molecules over template mole-
cule (5h).

Table 4. Structures and biological activity values of piperidine-4- 
carboxamide derivatives (Series-4)

N N

O

S

R3

Me

Cl

Cl
O O

Compound R3 pIC50

11a CF3 8.06
11b* NO2 8.62
13* NH2 8.03
14a NHAc 8.23
14b NHMs 8.66
11c Morpholino 8.55
11d OMe 8.10
11e SMe 8.51
11f SO2Me 8.66
11g* SO2Et 8.72
11h SO2i-Pr 8.82
11i* SO2NH2 8.47
11j SO2NHMe 8.82
11k* SO2NMe2 8.92
11l SO2 (Morpholino) 8.88

Asterisk (*) indicates test set compounds.

bioactive conformation and then minimized it by applying 
Tripos force field with Powell method and conjugate gradient 
minimizer. The minimization was terminated when the energy 
gradient convergence criterion of 0.05 kcal/mol was reached or 
when the 5000 step minimization cycle was exceeded. Rests 
of the molecules were built by changing required substitution 
on the template molecule and minimized similarly as template 
molecule by keeping core part constrained. Finally Gasteiger- 
Hückel charges were applied to all the molecules of dataset 
and it was subsequently used for QSAR studies. 

Structural alignment. Molecular alignment is one of the most 
important and sensitive parameter in 3D-QSAR. Least energy 
conformation of template molecule (5h) was considered as a 
bioactive conformation and other molecules of the dataset 

were aligned on it. Atom fit method was used to align all mole-
cules of dataset and shown in Figure 2. 

CoMFA and CoMSIA interaction energy. For the alignment 
set, the steric and electrostatic CoMFA field was calculated at 
each lattice intersection of a regularly spaced grid of 2.0 Ǻ unit. 
The grid box dimensions were determined automatically in such 
a way that the region boundaries were extended beyond 4.0 Å 
in each direction from the co-ordinates of each molecule. The 
steric and electrostatic interactions between probe and remain-
ing molecules were calculated. The generated steric and elec-
trostatic fields were scaled by CoMFA_STD scaling method 
in SYBYL with default energy of +30 kcal/mol. The electro-
static interactions are modeled by Columbic potential and van 
der Waals interaction using Lennard-Jones potential respective-
ly, and calculated by using standard Tripos force field. The 
distance dependent dielectric constant 1.00 was used. A sp3 hy-
bridized carbon atom having +1 charge serves as a probe for cal-
culating steric and electrostatic field. Any singularities were 
avoided at atomic position in CoMSIA field because a Gaussian 
type distance dependence of physicochemical properties was 
adopted; thus no arbitrary cutoff was required. Similarly indices 
were calculated as 0.3 as attenuation factor (α) for Gaussian 
type distance.

RF CoMFA. Region focusing is an application of weights 
to the lattice point in a CoMFA region to enhance or to attenuate 
the contribution of points to subsequent analysis. When the 
weights are StdDev*Coefficient values, the process is exactly 
equivalent to image enhancement of the derived CoMFA maps. 
The sharpness of focusing is controlled by a user provided ex-
ponential factor.

HQSAR. Hologram QSAR (HQSAR) is a technique which 
employs fragment fingerprints as predictive variables of biologi-
cal activity or other structural related data.26 HQSAR doesn’t 
require 3D structure of bioactive conformation or molecular 
alignments. HQSAR model generation deals with the 2D struc-
ture directed fragment fingerprints.28 These molecular finger-
prints are broken into strings at fixed intervals as specified by 
a hologram length (HL) parameter. The hologram length deter-
mines the number of bins in the hologram into which the frag-
ments are hashed. Each corresponding fragment SYBYL line 
notation (SLN) is then mapped to a pseudo-random integer in the 
range (50 - 500) using cyclic redundancy check (CRC) algori-
thm. The integer generated by the CRC algorithm is unique and 
reproducible for each and every unique SLN string. The hashing 
then occurs by folding the pseudorandom integer for a particular 
SLN string into the bin range defined. In HQSAR, bins contain 
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information about the number of fragments hashed into each 
bin. The optimal HQSAR model was derived from screening 
through the 12 default HL values, which were a set of 12 prime 
numbers (53, 59, 61, 71, 83, 97, 151, 199, 257, 307, 353 and 
401). The pattern of fragment counts from dataset molecules 
are then correlate to observed biological dataset using partial 
least squares analysis. The model development was performed 
using parameters viz., atom (A), bond (B), connection (C), chir-
ality (Ch), hydrogen (H), and donor/acceptor (DA). The validity 
of the model depends on statistical parameters such as non- 
cross-validated r2, cross-validated r2

cv (q2) by LOO, predictive 
r2

pred, and standard error. The robustness of the model depends 
on the more challenging test set prediction reflected by its 
predictive r2

pred value. 
PLS analysis. The regression analysis was carried out by 

using partial least square (PLS) method29-31 in CoMFA and 
CoMSIA. The cross-validation analysis was performed using 
leave-one-out (LOO) method, wherein one compound was re-
moved from the dataset and its activity was predicted using 
the model derived from the rest of the molecules. To speed up 
analysis and to reduce the noise, the column with values (σ) 
below 2.0 kcal/mol was filtered off. Subsequently, PLS analyses 
were performed without cross validation, using optimum numb-
er of components (ONC) obtained from LOO method. The q2 
that resulted in optimum number of components and lowest 
standard error of prediction (SEP) were considered for further 
analyses and calculated using following formula:

∑
∑

−

−
−=

γ

γ

γγ

γγ

2

2

2

)(

)(
1

meanactual

actualpred

q

where, γpred, γactual and γmean are predicted, actual, and mean 
values of the target property (pIC50) respectively. Equal weights 
for CoMFA were assigned to steric and electrostatic fields 
using CoMFA_STD scaling option. To derive 3D-QSAR mod-
els CoMFA and CoMSIA descriptors were used as an indepen-
dent variable and pIC50 activity value as dependent variable. To 
further assess the robustness and statistical confidence of the 
models, bootstrapping analysis for 1000 runs was performed. 

Predictive correlation coefficient (r2pred). The predictive abili-
ty of generated QSAR models were determined by using a test 
set of 9 compounds that were excluded during model generation. 
The energy minimization and geometry optimization of these 
9 molecules is as same as the training set compounds described 
above, and their activity was predicted by using the model gen-
erated from training set. The predictive correlation coefficient 
(r2

pred), based on test set molecules is computed by using follow-
ing formula.

r2
pred = SD

PRESSSD )( −

Where, SD is sum of squared deviation between the biological 
activity of test set molecules and mean activity of training set 
molecules. PRESS is predictive residual sum of square and is 
calculated by taking difference in predicted and actual activity 
of test set molecules. For all conventional analysis (non cross 

validation) the ‘minimum sigma’ standard deviation threshold 
was set to 2.0 kcal/mol.

Results and Discussions

CoMFA and CoMSIA analysis. We derived 3D-QSAR Co-
MFA and CoMSIA models for piperidine-4-carboxamide 
derivatives with good predictivity in terms of q2 and r2 values. 
The derived standard CoMFA model shows better statistics 
(q2 = 0.651, r2 = 0.888 with an ONC = 4), and combined CoM-
SIA model with electrostatics and hydrogen bond acceptor 
fields (q2 = 0.665, r2 = 0.892 with an ONC = 5) indicates good 
predictions. For both CoMFA and CoMSIA models the standard 
error of estimate (SEE) was found to be 0.396 and 0.397, res-
pectively. After region focusing, a q2 value for CoMFA model 
(0.753) was distinctly increased, because of the weight for those 
meaningful grid points are increased and noise is decreased. 
Further robustness of developed CoMFA and CoMSIA models 
was assessed by bootstraps analysis with standard deviation. 
For CoMFA model, BS-r2 was found to be 0.968 with 0.017 
SD and for CoMSIA model BS-r2 was 0.936 with SD = 0.020. 
The statistical ANOVA test produced good result for CoMFA 
(47.54) and CoMSIA (38.00). The predictive ability of CoMFA 
and CoMSIA models depends upon the contribution of steric, 
electrostatic and H-bond acceptor field. The steric and elec-
trostatic contribution for CoMFA model was found to be 50.7% 
and 49.3%. CoMSIA model was build with electrostatics and 
H-bond acceptor fields with contributions 66.9% and 33.1% 
respectively. The field contribution value for CoMFA indicates 
that both steric and electrostatic field contributes almost similar 
for the model development. But, in case of CoMSIA the elec-
trostatic field has more impact than H-bond acceptor field and 
it is resulted in higher q2 value. The regression analysis for both 
CoMFA and CoMSIA models were given in Table 5. Actual and 
predicted values along with residual values for CoMFA and 
CoMSIA training set and test set molecules were summarized 
in Table 6.

HQSAR analysis. HQSAR model generation was carried 
out using several parameters such as fragment distinction, frag-
ment size and best hologram length (BHL). The HQSAR models 
were generated using default fragment size (4-7) combined with 
various hologram length and fragment types. Table 7 summariz-
es the results for different fragment type and hologram length. 
With the best fragment type parameters, PLS analyses were per-
formed to investigate whether different fragment sizes could 
improve statistical results or not. The HQSAR results from 
different fragment sizes are summarized in Table 8. The best 
model (q2 = 0.662, r2 = 0.936) obtained with BHL = 97, NOC = 
6 and with A/C/H/DA fragment types. Influence of various frag-
ment sizes shows that larger fragment size was favored for 
improving statistical results in the form of q2 value. However 
increment in q2 is significant when fragment sizes changes 
from 4-7 to 8-11. The increment found in q2 was 0.101. We 
chosen final model for HQSAR analyses with higher q2 and 
lower SEE values as summarized in Table 8. The final model 
was built using A/C/H/DA key parameter, and 7-10 as the frag-
ment size with 0.314 as SEE. Low residual values obtained for 
developed HQSAR model indicates its reliability, and can be 
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Table 5. PLS summary of standard CoMFA model and combined CoMSIA model with different parameters

Models N q2 r2 r2
pred SEE F-value BS-r2 SD 

Contributions (%)

S E A H D

CoMFA 4 0.651 0.888 0.804 0.396 47.54 0.968 0.017 50.7 49.3 - - -
RF 6 0.753 0.981 0.657 0.169 191.4 0.994 0.004 63.8 36.2 - - -
S 3 0.431 0.779 0.916 0.545 29.32 0.851 0.033 100 - - - -
E 5 0.651 0.908 0.850 0.367 45.35 0.953 0.025 - 100 - - -
A 6 0.622 0.784 0.704 0.574 13.33 0.853 0.035 - - 100 - -
H 3 0.496 0.805 0.749 0.512 34.34 0.887 0.045 - - - - -
SE 3 0.606 0.825 0.950 0.485 39.32 0.896 0.062 28.2 71.8 - - -
EA 5 0.665 0.892 0.844 0.397 38.00 0.936 0.020 - 66.9 33.1 - -
AH 4 0.580 0.858 0.632 0.447 36.12 0.911 0.024 - - 50.0 50.0 -
EH 4 0.626 0.916 0.837 0.343 65.32 0.941 0.017 - 65.7 - 34.3 -

SEA 4 0.620 0.853 0.852 0.454 34.68 0.913 0.035 17.4 48.4 34.2 - -
SEH 3 0.598 0.848 0.837 0.452 46.51 0.909 0.022 17.4 55.0 - 27.6 -
SED 4 0.507 0.840 0.866 0.474 31.40 0.892 0.049 20.7 55.5 - - 23.9
EAH 5 0.640 0.925 0.912 0.332 56.46 0.955 0.021 - 44.0 29.1 26.9 -
AHD 5 0.561 0.857 0.533 0.457 27.54 0.912 0.040 - - 36.3 48.0 15.7
SEAH 3 0.615 0.851 0.780 0.447 47.70 0.911 0.029 12.5 37.7 28.7 21.1 -
SEHD 4 0.516 0.874 0.852 0.420 41.59 0.913 0.037 17.3 43.4 - 21.4 17.9
SAHD 5 0.537 0.873 0.821 0.430 31.70 0.925 0.048 20.7 - 33.4 34.1 11.8
EAHD 5 0.605 0.895 0.717 0.392 39.07 0.943 0.029 - 39.2 22.9 22.6 15.3

SEAHD 5 0.581 0.899 0.849 0.385 40.73 0.944 0.021 11.9 34.0 20.2 17.9 16.0

N = optimum number of components as determined by the PLS leave one out cross validation study, q2 = cross validated correlation coefficient by LOO, 
r2 = conventional correlation coefficient, r2

pred = predictive correlation coefficient, SEE = standard error of estimate, r2-bs = correlation coefficient after 
1000 runs of bootstrapping, SD-bs= standard deviation for 1000 runs of bootstrapping, S = steric, E = electrostatics, A = hydrogen bond acceptor, H = 
hydrophobic, D = hydrogen bond donor, Models used for CoMFA and CoMSIA analysis are shown in bold font.

Table 6. Actual and predicted pIC50 values of training set and test set with residual values by CoMFA and CoMSIA analysis

Compound pIC50
Predicted pIC50 Residual Value

Compound pIC50
Predicted pIC50 Residual Value

CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA 

Training set 5h (temp) 9.53 8.89 8.94 0.64 0.59
1 6.31 6.25 6.63 0.06 ‒0.32 5i 7.74 8.48 8.68 ‒0.74 ‒0.94

11a 8.06 8.48 8.23 ‒0.42 ‒0.17 5j 7.52 8.33 8.09 ‒0.81 ‒0.57
11c 8.55 8.63 8.15 ‒0.08 0.40 5k 8.48 8.48 8.30 0.00 0.18
11d 8.10 8.39 8.15 ‒0.29 ‒0.05 5l 9.30 8.86 8.70 0.44 0.60
11e 8.51 8.49 8.44 0.02 0.07 6a 5.37 5.87 5.55 ‒0.50 ‒0.18
11f 8.66 8.59 8.56 ‒0.07 0.10 6b 6.10 5.87 5.64 0.23 0.46
11h 8.82 8.72 8.67 0.10 0.15 7b 7.41 7.54 7.31 ‒0.13 0.10
11j 8.82 8.70 9.02 0.12 ‒0.20 7c 7.48 7.71 7.73 ‒0.23 ‒0.25
11l 8.88 8.83 9.02 0.05 ‒0.14 7d 7.40 7.79 7.89 ‒0.39 ‒0.49
12 7.28 6.98 7.24 0.30 0.04 Test set
14a 8.23 8.40 8.39 ‒0.17 ‒0.16 11b 8.62 8.28 8.78 0.34 ‒0.16
14b 8.66 8.75 8.79 ‒0.09 ‒0.13 11g 8.72 8.61 9.83 0.11 ‒0.41
18 6.31 5.79 6.20 0.52 0.11 11i 8.47 8.28 8.65 0.19 ‒0.18
5b 5.92 5.98 5.93 ‒0.06 ‒0.01 11k 8.92 8.46 9.00 0.46 ‒0.08
5c 8.52 8.34 8.90 0.18 ‒0.38 13 8.03 8.31 8.08 ‒0.28 ‒0.05
5d 8.55 8.74 8.55 ‒0.19 0.00 5a 7.32 7.32 7.75 0.00 ‒0.43
5e 8.72 8.30 8.34 0.42 0.38 7a 7.78 7.95 8.24 ‒0.17 ‒0.46
5f 8.92 8.52 8.60 0.40 0.32 7e 6.17 5.87 5.85 0.30 0.32
5g 9.20 8.66 8.69 0.54 0.51 7f 6.74 5.81 6.10 0.93 0.64
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Table 8. HQSAR analyses for the various fragment sizes on the key 
statistical parameters using best model (A/C/H/DA) 

Atom Counts N q2 StdErr r2 SEE BHL

1-4 1 0.396 0.867 0.543 0.754 307
2-5 1 0.427 0.844 0.554 0.745 151
3-6 5 0.524 0.834 0.925 0.330 353
4-7 5 0.561 0.804 0.896 0.389 97
5-8 5 0.581 0.783 0.878 0.422 199
6-9 5 0.582 0.782 0.876 0.426 353
7-10 6 0.662 0.719 0.936 0.314 97
8-11 5 0.630 0.735 0.894 0.394 97

The final model chosen for HQSAR analysis is highlighted in bold font.
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Figure 3. Scatter plot diagram of predicted versus actual activity of 
training set (blue diamond) and test set (red square) compounds by 
CoMFA (A) and CoMSIA (B) analysis.

Table 7. Results of HQSAR analyses for various fragment distinctions on key statistical parameters using default fragment sizes (4-7)

Model Fragment distinction N q2 StdErr r2 SEE BHL 

1 A/B 4 0.511 0.827 0.898 0.378 199
2 A/C 4 0.517 0.822 0.935 0.302 257
3 B/C 3 0.469 0.845 0.831 0.476 307
4 A/B/C 2 0.420 0.865 0.681 0.642 257
5 A/B/Ch 4 0.544 0.790 0.910 0.354 353
7 C/H/Ch 3 0.544 0.783 0.810 0.506 353
8 A/C/DA 4 0.527 0.813 0.867 0.431 257
9 A/B/C/H 3 0.520 0.803 0.773 0.552 97
10 A/B/H/Ch 3 0.505 0.815 0.815 0.498 151
11 A/C/H/DA 5 0.561 0.804 0.912 0.358 97
12 B/C/Ch/DA 4 0.497 0.839 0.867 0.431 307
13 A/B/C/Ch/DA 2 0.469 0.829 0.645 0.677 257
14 A/B/C/H/Ch 3 0.526 0.798 0.774 0.551 97
15 A/B/C/H/DA 5 0.497 0.857 0.904 0.357 257
16 A/B/C/H/Ch/DA 5 0.520 0.837 0.895 0.391 199

A-atom; B-bond; C-connection; Ch-chirality; DA-donor/acceptor; Best model is highlighted in bold font.

used to predict biological activity of novel compounds.
Predictive ability of CoMFA, CoMSIA and HQSAR models. 

The predictive ability of QSAR models was validated by a test 
set of 9 compounds, which were excluded during model genera-
tion. Both CoMFA and CoMSIA models showed good pre-
dictive power in terms of r2

pred and, which is equal to 0.804 and 
0.844, respectively. The graph of predicted versus actual activi-
ties for training set and test set of CoMFA and CoMSIA models 
are shown in Figure 3A and 3B. The developed HQSAR model 
shows good predictive power of 0.728. The detailed predicted 
versus actual activities along with residual values for training 
set and test set was depicted in Table 9 and plotted in Figure 4.

Interpretation of contour maps. The different density maps 
of the steric, electrostatic and H-bond acceptor parameters of 
CoMFA and CoMSIA models are represented as 3D coefficient 
contour maps. The contour maps surround all lattice points 
where the QSAR is found to be strongly associate with changes 
in the molecular field values (which basically mean changes in 
structure) as well as in binding affinity or any other measure of 
biological property. According to the standard SYBYL settings, 

steric interactions are represented by green and yellow colored 
contours while electrostatic interactions are represented as red 
and blue contours. Green contours stand for points where the 
Lennard-Jones potential has to be increased by appropriate 
groups to increase the biological activity whereas the yellow 
contours are used to underline the points where such a potential 
has to be decreased by suitable substituent’s to correlate with 
increased binding affinity. The electrostatic red color shows 
the regions where the presence of a negative charge is expected 
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Figure 4. Scatter plot diagram of predicted versus actual activity of 
training set (blue diamond) and test set (red square) compounds by 
HQSAR analysis.

Figure 5. Steric stdev* coefficient contour map for highly active com-
pound (5h) generated by CoMFA analysis, where sterically favored/ 
disfavored areas are shown in green/yellow color.

Table 9. HQSAR analyses for the various fragment sizes on the key 
statistical parameters using best model (A/C/H/DA) 

Compound Actual pIC50 Predicted pIC50 Residual Value

Training set
1 6.31 6.42 ‒0.11

11a 8.06 8.40 ‒0.34
11c 8.55 8.17 0.38
11d 8.10 8.35 ‒0.25
11e 8.51 8.41 0.10
11f 8.66 8.62 0.04
11h 8.82 8.94 ‒0.12
11j 8.82 8.80 0.02
11l 8.88 9.06 ‒0.18
12 7.28 7.09 0.19
14a 8.23 8.38 ‒0.15
14b 8.66 8.54 0.12
18 6.31 6.36 ‒0.05
5b 5.92 5.88 0.04
5c 8.52 8.47 0.05
5d 8.55 8.89 ‒0.34
5e 8.72 8.79 ‒0.07
5f 8.92 8.47 0.45
5g 9.20 9.07 0.13

5h (temp) 9.53 8.93 0.60
5i 7.74 8.02 ‒0.28
5j 7.52 8.29 ‒0.77
5k 8.48 8.41 0.07
5l 9.30 8.87 0.43
6a 5.37 5.36 0.01
6b 6.10 5.92 0.18
7b 7.41 7.61 ‒0.20
7c 7.48 7.37 0.11
7d 7.40 7.50 ‒0.10

Test set
11b 8.62 8.41 0.21
11g 8.72 8.64 0.08
11i 8.47 8.74 ‒0.27
11k 8.92 8.77 0.15
13 8.03 8.36 ‒0.33
5a 7.32 6.22 1.10
7a 7.78 7.16 0.62
7e 6.17 6.36 ‒0.19
7f 6.74 7.08 ‒0.34

to enhance the activity, whereas the blue color indicates regions 
where placing more positive charge is expected to correlate 
with increased binding affinity. In case of H-bond acceptor field 
magenta color denotes where the presence of acceptor atom is 
expected to increase the activity, whereas red color indicates 
decrease in inhibitory activity. In CoMFA contour map template 
molecule (5h) was shown in background. 3D-CoMFA contour 
map for best fitted model with steric field for template (IC50 = 
0.29 nM, pIC50 = 9.53) molecule was shown in Figure 5. The 

presence of green colored contour on central phenyl ring near 
the meta and para position indicates that, this position is favor-
able for small bulky group like Cl and Me, and increases binding 
potency. In case of compound 5i (IC50 = 18 nM, pIC50 = 7.74) 
and 5j (IC50 = 30 nM, pIC50 = 7.52), the bulkier substitution at 
para position of central phenyl ring leads to decrease in binding 
affinity. The two yellow contours near para position indicate 
that, sterically bulkier groups (4-i-Pr and 4-MeO) are unfavor-
able for inhibitory activity. The alkyl linker plays a crucial 
role in demonstrating the inhibitory potency. It is clear that the 
increased or decreased in alkyl chain length in compound 14 
(IC50 = 52 nM, pIC50 = 7.28) and in compound 18 (IC50 = 480 
nM, pIC50 = 6.31) leads to reduced binding potency. Variation 
in alkyl chain length resulted in change in conformation of 
4-benzylpiperidine moiety. It might be because of steric hin-
drance with receptor cavity which is indicated by the presence 
of yellow contours near 4-benzylpieridine moiety. At R3 posi-
tion introduction of -CF3 group in compound 11a (IC50 = 8.7 
nM, pIC50 = 8.01) resulted in decrease in CCR5 binding potency, 
but introduction of more polar group like NO2 in compound 
11b (IC50 = 2.4 nM, pIC50 = 8.62) retained the inhibitory po-
tency. It suggests that polar groups are preferable at this position. 
The alkylsulfonyl (11f-11h) and aminosulfonyl (11i-11l) deriva-
tives exhibit good activity, which indicate larger groups, had 
better effect on the activity (11h, k, and l). 

CoMFA electrostatic contour map for template molecule 
(5h) is shown in Figure 6. Blue contour near para position of 
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Figure 6. Electrostatics stdev* coefficient contour map for highly active
compound (5h) generated by CoMFA analysis, where blue/red poly-
hedra depict the favorable site for positively/negatively charged groups.

Figure 7. Electrostatics stdev* coefficient contour map for highly active
compound (5h) generated by CoMSIA analysis, where blue/red poly-
hedra depict the favorable site for positively/negatively charged groups.

Figure 8. H-bond Acceptor stdev* coefficient contour map for highly
active compound (5h) generated by CoMSIA analysis. Magenta con-
tour indicates H-bond acceptor groups enhance binding affinity, 
whereas red contour decrease binding affinity

central phenyl ring, indicates that the small electropositive 
substituent are favorable for good inhibitory potency. The 
electropositive substituent’s like 4-i-Pr in compound 5i (IC50 = 
18 nM, pIC50 = 7.74) and polar 4-MeO in compound 5j (IC50 = 
30 nM, pIC50 = 7.74) resulted in slightly loss of binding potency. 
It indicates that the central phenyl ring may interact with the 
sterically restricted and hydrophobic pocket of receptor, and 
show small blue polyhedron adjacent to these functional groups. 
The carbonyl group of 1-acetylpiperidin-4-yl substituent’s of 
template molecule show red contour near the position of car-
bonyl group. The carbonyl group position and orientation is 
important for CCR5 binding. Polar groups are required for high 
binding potency. Compounds with 1-acylpiperidin-3-yl group 
substitution on 5b (IC50 = 1200 nM, pIC50 = 5.92), 7e (IC50 = 680 
nM, pIC50 = 6.17) and 7f (IC50 = 180 nM, pIC50 = 6.74) shows 
blue contour near this substitution, indicates unfavorable for 
inhibitory potency. 

CoMSIA electrostatics contour map (Figure 7) shows blue 
and red polyhedra around template molecule. At R1 position red 
contour near carbonyl group indicates this group is favorable 
for inhibitory activity. According to experimental study it is 
clear that, amide moiety is essential for CCR5 binding. The 1- 
acetylpiperidin-4-yl substituent afforded compound 7a (IC50 = 
16 nM, pIC50 = 7.78) showed increased binding potency over 
compound 1 (IC50 = 480 nM, pIC50 = 6.31), because of presence 
of acetylpiperidinyl moiety. Here, amide group orientation plays 
a major role in CCR5 inhibition. Bulkier substitutions on ‘N’ 
of piperidine ring, increases the inhibitory potency when com-
pared it with compound 1. Replacement of acetyl group on pi-

peridine moiety resulted in substantial reduction in binding affi-
nity, indicates amide carbonyl group is essential for binding affi-
nity. In case of compound 6a (IC50 = 4300 nM, pIC50 = 5.37), 
lack of substitution on piperidine N, resulted in loss of potency. 
It indicates that for better inhibitory potency, piperidine ‘N’ 
must be substituted. The presence of electronegative substituent 
(R3 = F) on 4-benzylpiperidine moiety had slightly better effect 
on inhibitory potency (5e vs. 5f, 5g vs. 5h).

Figure 8 depict CoMSIA H-bond acceptor contour map. 
The template molecule was shown in background and surround-
ed by red and magenta colored contour. Small magenta contour 
occurs near R1 (C = O) group. It indicates that carbonyl group 
acts as an H-bond acceptor. Big red colored contour occurs near 
methyl part of acetyl group indicates that position is unfavorable 
for H-bond acceptor group. Another small sized red contour 
occurs near R3 position indicates that corresponding position 
is unfavored for H-bond acceptor groups.

HQSAR atomic contribution map. HQSAR technique gives 
us straight forward clues about the individual atomic contribu-
tion to the biological activity through the different color codes. 
HQSAR color codes the individual atoms of molecules depend-
ing upon their contribution towards biological activity. Atomic 
contribution map for few molecules was depicted in Figure 9. 
Highly active compound 5h (IC50 = 0.29 nM, pIC50 = 9.53) color 
coded with yellow, green-blue and white color indicates contri-
butes positively for inhibitory activity. The carbonyl group of R1 
substitution shows yellow color code indicates that this group 
is contributing positively for inhibitory activity. This is well 
supported by CoMFA and CoMSIA electrostatic red contour 
map. The 4-Me substitution on central phenyl ring shows yellow 
color code for hydrogen indicate that contribute positively for 
activity. It is supported by CoMFA and CoMSIA steric and elec-
trostatics green and blue contour maps. Another highly active 
compound 5l (IC50 = 0.50 nM, pIC50 = 9.30) of the series shows 
similar color coding system as like compound 5h. Both com-
pounds show blue and yellow color code on piperidine ring of 
4-benzylpiperidine moiety, it indicates positive contribution 
for inhibitory activity. The least active molecule of dataset 6a 
(IC50 = 4300 nM, pIC50 = 5.37) shows red, red-orange and oran-
ge color code for atomic contribution. The color code red on 
piperidine ring signifies that, because of lack of substitution at 
R1 position this compound is not able to make essential amide 
bond, which is necessary for potent bioactivity. Unsubstituted 
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Figure 9. Positive and negative contribution map for few molecules obtained by HQSAR analysis. Color codes red, red orange, and orange show
the unfavorable or negative contribution to the activity, the color codes yellow, green blue, and green denote favorable or positive contribution to 
the activity. The white color shows the intermediate contribution to the activity.

central phenyl ring also shown red color code. On the other hand 
piperidine moiety shows red and red-orange color code, this 
implies that it is unfavorable for activity. Compare to compound 
7a (IC50 = 16 nM, pIC50 = 7.78) and 7c (IC50 = 33 nM, pIC50 = 
7.48), compound 6a (IC50 = 0.29 nM, pIC50 = 5.37) does not 
have any substitution either at R1, R2 and R3 position. But, 
compound 7a and compound 7c have substituted acetyl and 
benzoyl group at R1 position, which made them highly active. 
It indicates that to exhibit good inhibitory potency, compound 
must be substituted at least in the R1 position. 

In summary, CoMFA and CoMSIA contour maps offer enou-
gh information for us to understand 3D-QSAR relationship 
between structures and their biological activities. CoMFA, 
CoMSIA and HQSAR result supports one another; indicate 
good agreement between the results. 

Conclusion

This study was conducted to rationalize the CCR5 antagonis-
tic activity of 38 piperidine-4-carboxamide derivatives by Co-
MFA, CoMSIA and HQSAR analyses. All these generated 
models showed good statistical correlation in terms of q2 and 
r2 values and well explained the variance between biological 
activities. Additionally higher bootstrapped r2 values and lowest 
standard error of estimate indicates the stability of QSAR mod-
els. The statistical significance and robustness of developed 
QSAR models were judged by test set prediction. Comparing 
the CoMFA and CoMSIA analyses results, we can see that the 
CoMSIA model has slightly better predictive ability than CoM-
FA model. The spatial effect of steric, electrostatics and H-bond 
acceptor descriptors on biological activity of aligned molecules 
were given by contour map. We could suggest from contour map 
analysis that, incorporation of small electropositive group at 
para position of central phenyl ring could increase binding 
potency and it is supported by yellow color code in HQSAR 

contribution map. Contour map analysis revealed that com-
pound with carbonyl or sulfonyl group at R1 position is favorable 
for activity and supported by favorable yellow color code in 
HQSAR contribution map. At R3 position polar substituents 
are favorable for retaining the inhibitory activity and larger 
substituent’s had better effect on activity. The molecular model-
ing techniques are successfully employed in this study to cor-
relate biological activities with structures. Good statistical corre-
lation and satisfactory predictive power of developed models 
indicate that these models can serve as computational tools for 
rational design of novel CCR5 antagonists with enhanced acti-
vity and prediction prior to synthesis.
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