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Molecular theory of Brownian motion of a single heavy par-
ticle in a fluid had received a considerable attention in earlier 
years.1-7 After molecular dynamics (MD) simulation technique 
was utilized, this subject has been widely studied by a variety 
of MD simulation methods.8-23 The common issues here were 
about the long time behavior of the force and velocity auto-
correlation functions, the system size dependent friction co-
efficient of a massive Brownian particle, and test of the Stokes- 
Einstein law.

For the case of two heavy particles in a fluid, the generalized 
Langevin equation, obtained by Deutch and Oppenheim,24 re-
sulted in a Fokker-Planck equation more general than the equ-
ation obtained by Mazo.25 For long times their result reduces to 
that found by Mazo. They evaluated the molecular expression 
obtained for the friction tensor by modification of an approxi-
mate hydrodynamic fluctuation theory argument developed by 
Zwanaig.26 The dependence of the friction tensors on inter-par-
ticle separations, R12, is obtained to the lowest order in (a/R12) 
where a is the radius of the Brownian particles.

Recently, The effects of hydrodynamic interactions on the 
friction tensors for two particles in solution were studied.27 
The particles have linear dimensions on nanometer scales and 
are either simple spherical particles interacting with the solvent 
through repulsive Lennard-Jones forces or are composite clu-
ster particles whose atomic components interact with the solvent 
through repulsive Lennard-Jones forces. The solvent dynamics 
is modelled at a mesoscopic level through multi-particle col-
lisions that conserve mass, momentum and energy.28 The de-
pendence of the two-particle relative friction tensors on the 
inter-particle separation indicated the importance of hydro-
dynamic interactions for these nano-particles.

In this work we focus on the calculation of the friction coe-
fficients between two very massive Brownian particles in a 
Lennard-Jones solvent using MD algorithm of Newton's equ-
ations of motion. Our goal is to obtain the friction coefficient as 
function of the distance between the two Brownian particles and 
to compare with the hydrodynamic friction tensors evaluated 
by a molecular theory.24 This work is related to and motivated 
by our previous work22 in which equilibrium MD simulations 
in a microcanonical ensemble were performed to evaluate the 
friction coefficient of a Brownian particle (BP) in a Lennard- 
Jones (LJ) solvent from the time dependent friction coefficients 
and the momentum autocorrelation functions of the BP with 
its infinite mass at various ratios of LJ parameters of the BP 
and solvent, σB/σs.

Molecular Dynamics Simulation and Two-Particle Friction

There are 20 Lennard-Jones (LJ) systems under investigation. 
Each system consists of two Brownian particles (BPs) with LJ 
parameter σB and solvent molecules of N = 32,000 each of 
which has LJ parameter σs. The LJ potential used in our mole-
cular dynamics (MD) simulations is a purely repulsive CWA 
(Chandler-Weeks-Andersen) potential:29
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where the LJ parameters are chosen as σ = (σB + σs)/2 for the 
BP-solvent molecule interaction or σ = σs for interaction bet-
ween solvent molecules and ε = 1.006 kJ/mol. The inter-particle 
potential is truncated at rc = 21/6σ. The preliminary microcano-
nical ensemble (NVE fixed) molecular dynamics (MD) simula-
tion for N = 32,000 LJ molecules of mass of m = 3.9948 g/mol 
was started in the cubic box of length L = 6.84 nm, of which 
the density is equal to 0.6633 g/cm3. The corresponding reduced 
number density is ρ* = ρσs

3 = (N/V)σs
3 = 0.8 which is a typical 

value used for several MD simulation studies for transport 
coefficients of the LJ model fluid.30 The temperature of the 
system is chosen as 40.33 K for comparison with the meso-
scopic solvent cases17,27 and T* = kT/ε = 1/3.

After a full equilibration of the solvent-only system, two BPs 
with various sizes and fixed distances between two BPs are 
introduced such that the particle pair is oriented along the z 
axis with BP centers at -R12/2 and R12/2. The mass of a BP, M, 
is infinity and several MD simulation methods are employed 
for the treatment of the infinite mass limit.22,23 In the beginning 
of each MD simulation, the value of σB is increased gradually 
from zero to σB. The distances between two BPs are chosen to 
lie (1) R12 = 0.7, 0.9, 0.11, 0.13, 0.16, 0.19, 0.22, and 0.25 nm 
for σB = 0.3 nm, (2) R12 = 0.15, 0.17, 0.19, 0.21, 0.24, and 0.27 
nm for σB = 0.7 nm, and (3) R12 = 0.21, 0.23, 0.25, 0.27, 0.29, 
and 0.32 nm for σB = 1.0 nm. For the systems of σB = 0.3 nm 
and R12 ≥ 1.9 nm, those of σB = 0.7 nm and R12 ≥ 1.9 nm, and 
those of σB = 1.0 nm, the simulation box was changed to a 
rectangular shape where the length along z, Lz, was increased 
due to the periodic boundary condition and those along x and 
y, Lx and Lx, decreased as 5.0 nm to keep the number density 
constant. In order to maintain a constant value of the pressure, 



Notes Bull. Korean Chem. Soc. 2010, Vol. 31, No. 8      2403

         

                      0.6                    1.1                    1.6                    2.1                     2.6

                                                   R12

ζ

0.7

0.5

0.3

0.1

‒0.1

Figure 1. Friction coefficients (kg/mol․ps) for σ = 0.3 nm as a func-
tion of R12 (nm). ●: ζ (
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respectively. The solid line indicates twice the single particle 
friction, 2․ζ0 = 0.558 kg/mol․ps, and the other lines from top are the 
analytic results for ζ (
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the volume of the box was slightly increased by an amount that 
corresponds the excess volume occupied by two BPs and so 
the length of the cubic and rectangular simulation box for the 
system is redefined by (N/Lx·Ly·Lz)σB

3 + (2/Lx·Ly·Lz)σs
3 = 0.8.

Long range corrections to the energy, pressure, etc. due to 
the potential truncation were included in these properties by 
assuming that the pair distribution function was uniform beyond 
the cutoff distance.31 The equations of motion were solved 
using the velocity Verlet algorithm32 with a time step of 2.0 × 
10‒15 second. The systems were fully equilibrated and the equili-
brium properties were averaged over five blocks of 1,000,000 
time steps of 10 different initial configurations. The configura-
tions of two BP particles were stored every five time steps for 
further analysis.

Shear viscosity of the LJ solvent only is calculated by the 
modified Green-Kubo formula for better statistical accuracy:33
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with αβ = xy, xz, yx, yz, zx, and zy. 
The fixed-particle friction tensor for two Brownian parti-

cles (BPs) can be obtained from the time integral of the force 
auto-correlation function as
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where fα (t) = Fα (t) ‒ <Fα> with Fα (t) the force on the BP α, k 
is Boltzmann's constant and T is the absolute temperature. 
Isotropy yields the relations, ζz
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for the self-friction terms, and ζz
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A number of different friction tensor can be defined for this 

two BPs problem since the friction tensor in Eq.(4) is labeled 
by particle indices and spatial components. In view of the sym-
metry properties noted above, we define the relative friction 
components ζz

α
z
β (R12) and ζx

α
x
β (R12) by
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where f12 (t) is defined by

f12 = F1 ‒ F2. (6)

Results and Discussion

In the definition of the friction coefficient three limit pro-

cedures are involved; the long time limit (t → ∞); the thermo-
dynamic limit (N → ∞); and the infinite mass limit (M → ∞).9 
If we first consider the infinite time limit the resulting friction 
coefficient is zero. The only way to have a non-zero value for 
the friction coefficient is by first taking M → ∞.9 In the thermo-
dynamic limit N → ∞, the projected and unprojected force 
autocorrelation functions are the same34 and the equation (4) 
is possible. In order to calculate the friction coefficients between 
the BPs from Eqs.(4) and (5), the mass of the BP, M, becomes 
infinity, or the BPs are fixed in space using a holonomic con-
straint method.35 While the MD simulation by using an infinite 
mass violates the equation of motion since the BPs never move 
with the force on it, the constraint method MD simulation re-
turns the BPs back to their original positions with zero velo-
cities, and trajectories by both MD simulations are not the same. 
However, it is found that the momenta of the whole system 
carried out by both the infinite mass and the constraint method 
MD simulations are not conserved, because the momentum of 
the BP is not well defined with zero velocity and infinite mass. 
A reasonable trick to bypass this difficulty is to put the mass of 
the BP as 1090 g/mol, and in this case the momentum of the 
system is conserved: The magnitude of the mass of the BP is 
on the order of 90 and its velocity is on the order of ‒90, but its 
momentum has a finite value and is equal to the negative of 
the total momentum of the solvent particles.22,23

Figure 1 shows the MD simulation results for the two-parti-
cle friction coefficients between two BPs with σB = 0.3 nm as 
a function of the inter-particle separation, R12. We have also 
carried out a set of calculations for σB = 0.7 and 1.0 nm but the 
results show a very similar trend of the case of σB = 0.3 nm. 
The friction coefficients were obtained from the extrapolation 
of the time-dependent friction to t = 0 as discussed in our earlier 
investigation of the friction coefficient for a single BP.17,22,23 
The components of the friction normal to the intermolecular 
axis, ζx

1
x
1 and ζx

1
x
2, are seen to be almost independent of R12. 
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According to Eq. (4),
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since the BP pair is oriented along the z axis. On the other 
hand, the components parallel to this axis, ζz

1
z
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2, increase 

as the inter-particle separation decreases since the forces f1z 
and f2z are coupled through the solvent particles between BPs. 
This trend is seen even more clearly in the relative friction where 
ζ (
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x
) is nearly independent of R12 and equal to its asymptotic 

value of twice the single particle friction coefficient according 
to Eq.(5) since ζx
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2 ≈ 0. The parallel component, 

ζ (
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), increases as R12 decreases.
The overall behavior of the two-particle friction coefficients 

between two BPs in a LJ solvent as a function of the inter-par-
ticle separation, R12, obtained from the MD simulations is almost 
the same with that in a mesoscopic solvent27 even though the 
absolute values of friction coefficients are very different. For 
example, the single particle friction coefficients, ζ0, in a LJ sol-
vent are 0.279, 0.545, and 0.791 kg/mol․ps for σB = 0.3, 0.7, 
and 1.0 nm, respectively, while the corresponding ζ0 in a meso-
scopic solvent are 0.604, 1.62, and 2.65, with different values 
of viscosity η for the solvent-only system, which is discussed 
below.

Next we have chosen to contrast our simulation results with 
the predictions of a very simple hydrodynamic model simply 
to gauge the rough magnitudes of hydrodynamic effects. If we 
assume that hydrodynamic interactions between the particles 
are given by Oseen interactions, the two-particle friction tensor 
takes the form,40
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where ζ0 is the one-particle friction coefficient and T (R12) is 
the Oseen tensor,
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Here  is a unit vector along the inter-particle (z) axis. 

Taking the inverse of the matrix in Eq. (9) we find,24
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Furthermore, according to Eq. (5),
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where h(R12) = ζ0/8πηR12 with η the viscosity for the sol-
vent-only system.

The viscosity for the solvent-only system of N = 32,000 
Lennard-Jones (LJ) particles of mass m = 3.995 g/mol in the 
cubic simulation box of length L = 6.84 nm (ρ = 100 nm‒3) 
interacting through the WCA potential with LJ parameters σs = 
0.2 nm and ε = 1.00604 kJ/mol at T = 40.33 K obtained from 
Eq.(2) is η = 2.53 ± 0.02 mP (10‒4kg/m․s) and the reduced 
viscosity η* = ησs

2 (mε)1/2 = 12.2. Comparing with the previous 
mesoscopic MD simulation study17 where ρ = 2035.42 nm‒3 

with same m and T but σs = 0, the corresponding viscosity was 
η = 4.70 mP.

For comparison, in Figure 1 we also plot these expressions for 
the friction tensor components, Eqs.(11)-(13). The simple hydro-
dynamic model estimates a very small difference from the single 
particle friction coefficients, ζ0, for the self-friction terms at 
all inter-particle separations while the cross friction terms vary 
dramatically at small inter-particle separations. The agreement 
of the friction results for ζz

1
z
1, ζx

1
x
1,  and ζz

1
z
2 between the MD 

simulation and the simple hydrodynamic model is generally 
good but that for ζx

1
x
2 is very poor. Our MD simulations show 

that ζx
1
x
2 varies much more weakly with inter-particle separa-

tion than the predictions of the simple hydrodynamic model. 
While the disagreement of ζx

1
x
2 results in the disagreement of 

the relative friction, ζ (
x
‒
x
), which is equal to its asymptotic value 

of twice the single particle friction coefficient, the agreement 
of the other relative friction, ζ (

z
‒
z
), is quite good. There are devi-

ations for the relative frictions at small inter-particle separations 
as might be expected since the simple hydrodynamic approxi-
mations will be poorest at these distances.

In summary, we presented a molecular dynamics (MD) si-
mulation study of friction behavior between two very massive 
Brownian particles (BPs) oriented along the z axis with BP 
centers at -R12/2 and R12/2 in a Lennard-Jones solvent as a 
function of the inter-particle separation, R12. In order to fix the 
BPs in space an MD simulation method with the mass of the 
BP as 1090 g/mol22,23 was employed in which the total momen-
tum of the system was conserved. The cross friction coefficients 
of x- and y-components are nearly insensitive to R12 but that of 
z-component varies with R12 in good accord with the simple 
hydrodynamic approximation. On the other hand, the self-fric-
tion coefficients are estimated as a very small difference from 
the single particle friction coefficients, ζ0, at all inter-particle 
separations which agrees with the simple hydrodynamic app-
roximation. Consequently ζ (

x
‒
x
) is nearly independent of R12 and 

equal to its asymptotic value of twice the single particle friction 
coefficient, and the other relative friction, ζ (

z
‒
z
), is in good agree-

ment with the simple hydrodynamic approximation.
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