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This study examined the overlapping resonances in the systems involving 1 open and 2 closed channels using the phase- 
shifted version of multichannel quantum-defect theory (MQDT). The results showed that 21 patterns for the q reversals 
in the autoionization spectra are possible depending on the relative arrangements of the two simple poles and roots of 
the quadratic equations.  Complete cases could be generated easily using the q zero planes determined using only 3 asym-
metric spectral line profile indices. The transition of the spectra of the coarse interloper Rydberg series from the lines 
into a structured continuum by being dispersed onto the entire Rydberg series was found.  The overall behavior of the 
time delays was found to be governed by the dense Rydberg series, which is quite different from the one of the autoioni-
zation cross sections that is governed by an interloper, indicating that different dynamics prevail for them. This is in con-
trast to the two channel system where both quantities behave similarly. The dynamics obtained in the presence of over-
lapping resonances is as follows. The absorption process is instant and dominated by a transition to the interloper line. 
This process is followed by rapid leakage into the dense Rydberg series, which has a longer residence time before ioni-
zation than that of the interloper state. This is because the orbiting period is proportional to ν3 so that an excited electron 
has a shorter lifetime in the interloper state belonging to a lower member of the Rydberg series.
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Introduction

Complex overlapping resonances caused by an interloper 
are observed routinely in autoionization spectra, such as in N2,1 
Ba,2 Pb3 and Yb.4 Although configuration mixing theory (CM) 
was the first to study overlapping resonances in atomic and 
molecular systems,5-6 there have been several difficulties in 
implementing it and only a few studies in this line of research 
have been carried out.7 Multichannel quantum defect theories 
(MQDT),8-9 with the implementation of phase renormaliza-
tion,10-11 are extremely powerful for dealing with observed over-
lapping resonances.12 Dealing only 3 channel systems with one 
open and 2 closed, or occasionally one more open channel being 
included,13-14 was sufficient to reproduce the numerous over-
lapping resonances observed. Fundamental studies of these sys-
tems particularly for the perturbed Rydberg series with a single 
closed channel acting as an interloper were performed by Giusti- 
Suzor and Lefebvre-Brion,15 Cooke and Cromer,11 Wintgen and 
Friedrich16 and Ueda.17 They examined the phenomena in com-
plex resonances such as intensity borrowing, q reversals and 
truly bound states in continuum. In addition to their studies, 
work by Lane et al.3 should be mentioned despite the defect in 
the method that scattering theories were used to examine the 
autoionization spectra. Nonetheless, the systems showed a range 
of interesting aspects of overlapping resonances and are worth 
adopting in the present work. In another study,7 they adapted 
Fano's CM theory to handle the interloper in overlapping re-
sonances. This work was applied once by Gallagher's group to 
explain their experimental data.18 

Giusti-Suzor and Lefebvre-Brion15 were the first to lay the 
foundation for studies of the complex resonance phenomena 
caused by an interloper. Their formulation of the influence of 
an interloper in terms of direct and indirect processes is full of 

physical insights and worth further study. Cooke and Cromer11 
derived the formulae for the widths and shifts of the peaks in 
the Rydberg series due to an interloper. Their formulation con-
tained almost all the ingredients of Ueda's one17 but was limited 
to the isolated core excitation (ICE) spectra. Their formula lack-
ed an integration of various parts into a single form. In contrast 
to Cooke and Cromer, Ueda's formulation dealt directly with 
the cross section itself and decomposed it into the product of 
Beutler-Fano functions corresponding to the interloper term 
appearing as an envelope one and the dense Rydberg series 
appearing as a chopper of the Rydberg series of the interloper. 
Wintgen and Friedrich16 also dealt directly with the cross sec-
tion. They instead formulated it into one Beutler-Fano form. 
Ueda's formulation has the advantage of disentangling the physi-
cal terms of a different nature, each of which behaves much sim-
pler and provides easy access to the dynamics of a complex re-
sonance. In its nascent form, it has a limitation. Therefore, this 
study examined the pole structure of the principal part of Ueda's 
formula and utilized it to disclose all possible dynamics that 
bring about a q reversal with the help of the root surfaces of q. 

Summary of formulas due to Ueda and others. Currently, the 
practical use of multichannel quantum defect theory (MQDT) 
almost always adopts the phase-shifted MQDT and starts direc-
tly from either zero submatrices or zero diagonal submatrices 
depending on the types of system.12 According to this practice, 
the short-range reactance matrix takes the following form for 
systems involving 1 open and 2 closed channels:
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In the energy range where one channel is open and 2 other 
channels are closed, index 1 will be used for the open channel 
and 2 and 3 will be used for the closed ones. Let us assume that 
the ionization thresholds Ii satisfy I1 < I2 < I3. If the energy-nor-
malized eigenfunction Ψ is expanded into

cos )i i i i
i

Z π ν µ= Ψ ( +∑Ψ % %Ψ (2)

in terms of the standing-wave channel basis functions, iΨ%  can be
decoupled outside the reaction zone as follows:
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for motion along the ionization coordinate R, and Φj (ω) are the 
wavefunctions composed of the ion core and angular and spin 
part of the outer electron in the jth channel. The regular and 
irregular base pair ( , )j jf g  belongs to the jth ionization threshold 
energy  I j with an effective quantum number v j given by E = 
I j ‒ Ryd / v j. The expansion coefficients in (2) can be obtained 
as follows:
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where iξ%  denotes 1
oc
iK%  and iβ%  denotes π (νi + µi). The phase shift

rδ% , which is the phase of det(tan )ccβ κ+% % , satisfies
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The square of the modulus of det(tan )ccβ κ+% %  can be greatly 
simplified as

2 4 2 2 2
3 2 3 2( 1)( 1)eff effC Wξ ε ε= + +% % % % , (8)

where iε%  denotes 2tan /i iβ ξ% %  (i = 2, 3). The effective parameters 
for Rydberg series 2 used in (8) are defined as follows:
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where iW% , denoting 2
iξ% , is the spectral width for the lines of Ryd-

berg series i and Wq% , serving as a profile index for 2W%    , de-
notes 
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S%  in Eq. (9) can be interpreted as a shift in resonance position, 
albeit inappropriate,  and denotes
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2W%      are the spectral widths of the lines of perturbed Rydberg 
series 2 and are the same as 3

2π νΓ /2 considered extensively by 
Cooke and Cromer11 and Lecomte.13 The photoionization cross 
section can be reformulated as follows:17
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where iq%  is defined by 1 / i iD Dξ− % (i = 2, 3) with the transition 
dipole moments iD%  to the ith channel and 0Iσ%  denotes the autoio- 
nization cross section of an isolated Rydberg series 3 acting as 
an interloper and forms the envelope:

2 2
0 0 3 3 3( ) / ( 1)I qσ σ ε ε= + +% %% % % (14) 

where 2 2
0 1(4 )Dσ π αω= / 3 %% . It also serves as the "structured" 

continuum (or background) cross section. The line profile index 
2effq%  for the lines of the perturbed Rydberg series 2 is defined 

by
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Note that 0Iσ% is zero at 3 3qε = −% %  from which we might wrong-
ly conclude that σ is zero there. But the cross section σ  is not 
zero but instead has a value of
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because of the singularity of 2effq%  there according to Eq. (15). 
The last equality of Eq. (13) is due to Friedrich and Wintgen16 
where aε%  and aq%  are defined as
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Although the last form in Eq. (13) is symmetric with respect 
to the two Rydberg series and are unsuitable for discussing the 
perturbed Rydberg series, it is particularly suitable to consider 
the phenomena around 2

2 3 23tan tan Kβ β =% % %  or equivalently 
2

2 3 Wqε ε =% % % . The latter was the focal point in several studies15-16 
because it approximates the resonance positions in the presence 
of an interloper. At the energies satisfying it, the autoionization 
cross section can be given simply by 2

0 aqσ σ=% % % . 
Further developments and applications of Ueda's formula. 

The complex resonance, where a dense Rydberg series is pertur-
bed by one level of a coarse Rydberg series, can be viewed as 
a Rydberg series that interacts with the structured continuum 
from the point of view of the dense Rydberg series, or a coarse 
series chopped by the dense series from the point of view of 
the coarse one. Ueda developed a formulation that is best fitted 
to explain this phenomenon. Unfortunately, his formulation has 
not been used thus far. Other people took an approach that is 
valid only at the energies of bound states of the systems, where 
only two closed channels are included. Despite being limited 
to a particular energy, they yielded rather successful results but 
took more complicated forms.

Let us first consider the widths of the lines of the dense Ryd-
berg series when the perturber is present. These widths can be 
obtained in Ueda's formula by expanding 2ε%      into the Taylor 
series around the resonance center, i.e., RE E≈ R or 2tan 0β ≈% , 
of series 2 with respect to energy E. From Eq. (9), one obtains
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where 3
2 2 2/ /d dE d dEβ π ν πν= =% /2 Ryd is used. 2W%      (ER)

denotes the value of 2W%    at E = ER and Ryd denotes the 
Rydberg constant. The resonance peak width 2effΓ%  defined by 

2 22( ) /eff R effE Eε = − Γ%%  can be obtained as follows
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where all the quantities are calculated at E = ER. Wintgen and 
Friedrich16 obtained the corresponding width ΓWF using Smith's 
time delay19 τ(= 2 rdδ%h /dE)  in addition to the relation 4 / τΓ = h  
at the resonance energies satisfying tan 2

2 3 23( ) tan ( )R RE E Kβ β =% % % :

23
2

4Ryd
WF W

πν
Γ = %

( )2
3

23 3
23 23 3
3 2

2 13 2 13

11

Wq

K
K K

ε

ν νε
ν ν

+
       
  + + +    
         

% %

%
%

% %

(20)
 

However, ΓWF cannot be compared with Γ%     of Eq. (19) 
because it corresponds to the measured width of the resonance 
peaks as a whole while Γ%       only shows the width of the per-
turbed Rydberg series with perturber's contribution subtracted. 

It may be desirable to express the entire width Γ in terms of 
Γ%       because Γ%       is the disentangled entity with a clear phy-
sical origin. Since time delays and widths can be related using a 
simple relation, let us consider the time delay instead of the 
width. The precise formula of the time delay can be obtained 
easily as follows:

2Dτ = h
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Normally, the second term in the numerator can be ignored 
because the energy variation of 3β%  is much smaller than that 
of 2β% . Utilizing both this and the simplified form of (8) of the 
denominator,  the above equation can be written as follows:
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where isolated
2Dτ  is the time delay at the lines of the Rydberg series 

2 when there is no interloper and is given by
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The width function Γ may be defined at all energies by 
4 / DτΓ = h . Eq. (21) yields the intended disentangled relation
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where 2effΓ%  has the same form as (19) but defined for all ener-
gies:
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2effW%  is already defined in (10). Note that the width function 
is zero at 3 Wqε = −% % as 2effΓ% is zero there. 

Eq. (21) shows the interesting dynamics in that the interloper 
Rydberg series 3 affects the time delay only indirectly. Hence, 
the behavior of the time delay is dominated by the dense series 
2. This is in contrast to the autoionization cross section (13) 
whose overall behavior is governed by the interloper's one. This 
difference might be understood if one recalls that the absorption 
process is instant and the dominant absorption process is deter-
mined by the magnitude of the transition dipole moments, which 
is the transition to the interloper line, because the smaller size of 
its wavefunction resembles the ground wavefunction more clo-
sely and greater overlap is obtained. Since the residence time 
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or orbiting period is proportional to ν3, it is short for the lower 
line of the Rydberg series, which is the case for an interloper. 
This suggests that an excited electron quickly leaks into the 
dense series, which has a much longer orbiting period of time. 

Let us consider as another example of the difference between 
the results from different approaches15 for the maximum inten-
sity of the dense Rydberg series, whose connected line forms 
an envelope. This was obtained in Ueda's formula by inserting 

2 21 /eff effqε =% %  as
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and approximated in Giusti-Suzor and Lefebvre-Brion's15 at 
the resonance energies satisfying 2
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or 2

2 3 Wqε ε =% % % , as follows :
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Eq. (26) becomes Eq. (25) when 2effq% is dominated by the pole 
at 3 Wqε = −% %  as well as when 3 2, Wq q q% % %  are satisfied, where 

2effq%  is 2
3(1 ) / ( )W Wq qε− + +%% % . Such conditions are usually met. 

The shift and width of the resonance peak of a perturber were 
found to be equal to those of the unperturbed one. A cursory 
look at the spectra contradicts this. The spectra were considered 
to be undergoing a great change when the mutual interaction 
between the closed channels is introduced. It will be shown later 
that this apparent great change has another origin. The different 
conclusion drawn in previous work15 is due to the inability to see 
each spectrum of the envelope and dense Rydberg series separa- 
tely. Note that intensity enhancement can only be seen in the 
dense Rydberg series and amounts to 

2
2effq%  + 1. No enhancement

could be seen in the envelope. (Because there is no theory for the 
coupling between an envelope and perturbed spectra of dense 
series, it is unclear whether the lack of enhancement in the en-
velope was instituted intentionally from the outset.)

Pole structures in parameters. Since the behavior of dynamic 
parameters can be greatly influenced by the poles, let us examine 
their pole structure. In particular, the resonance positions are 
intimately related to the poles of 2effε% and the q-reversals are 
related to those of 2effq% . For this, we need a decomposition of 
S% in Eq. (12) into partial fractions,20 which contained only the 
principal part with the second order pole located at 3 Wqε = −% %  
as follows:
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Although the pole of second order exists in S%, it cancels out 
and only the first order pole remains in the decomposition of 

2effq%  in  Eq. (15) into partial fractions as follows: 
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which is composed of the entire part 2q%  and the principal part 
with simple poles at 3q− %  and Wq− % . This shows that the interloper 
to the line profile index 2effq%  for the autoionization cross section 
of Rydberg series 2 enters as simple poles at 3 3qε = −% %  and 

Wq− % . 
For the width, the effect of an interloper enters as simple poles 

not on the real axis but on the imaginary axis at ±i:
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Since the poles do not lie on the real axis, there is no singular 
behavior on the real axis, and 2effW% is always bounded (finite 
channel-channel coupling strengths). 

Finally, the decomposition of 2effε% into partial fractions can 
be obtained as follows:
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The perturbation of the reduced energy parameter 2effε%  from 
2ε%  by an interloper enters as the principal part with the second 

order pole at 3 Wqε = −% % . At the pole, 2effε%  exhibits complicated 
behavior but the number of cycles is unaffected by it. Otherwise, 
its behavior would be similar to 2ε%  and shows a regular periodic 
pattern. Since Rydberg series 3 is further from the ionization 
threshold than Rydberg series 2, 3ε%  is mostly zero and can be 
ignored in Eq. (30). If 1Wq%  , 2 21W Wq q+ ≈% %  and 2effε%  in  Eq. (30) 
are almost zero, which can explain the flat behavior of 2effε%  com-
pared to 2ε% . 

The fact that the order of pole of 2effε% is second has an unex-
pected consequence that the huge enhancement 2

2effq%  + 1 occur-
ring due to that pole is completely suppressed at the very pole 
since 2effq% is dominated by 2effε% near the pole and can be ignored 
so that the enhancement factor is 1 instead of 2

2effq%  + 1. In most 
case, this suppression can be ignored if the resonance peak of 
the dense series does not lie near the pole. No peaks at ν2 = 17 
in the spectrum of (b) 13 0.1K π=%  of Fig. 5, ν2 = 18 in (b) 13K =%  
0.12π and ν2 = 19  in (d) 13 0.15K π=% of Fig. 9 are due to this sup-
pression. 
q Reversals. The spectral shape of autoionization cross sec-

tions undergoes a conspicuous change when the line profile 
asymmetric index q undergoes a sign change. It changes sign 
either at the zero or at the simple pole. It should be noted that 

2effq%  is a simple pole so that the sign is reversed. The sign would 
remain the same if the pole was of a second order. It was already 
found that the poles of 2effq%  are at 3q− %  and Wq− % . Eq. (28) shows 
that the zeros of 2effq% , another source of q reversal, occur mainly 
at two values of 3ε% , which are the roots of the quadratic equation 

2 3( )effq ε%%  = 0:

2
2 3 3 3 2 3(1 ) 0.W Wq q q q q qε ε− − + − − =% %% % % % % % (31) 

The real roots of 2effq% = 0 exist when the discriminant of the 
quadratic equation (31) is ≥ zero:
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≫
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Figure 1. 2effq% = 0 surfaces for 4Wq = −% . The curves for the double root
are also shown with heavy lines.

Figure 2. 20 possible patterns of q reversals. In addition, one more pattern corresponding to the root of a linear equation is possible for 2effq% = 
0 . Therefore, in total, 21 patterns are possible for q reversals.
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3 2 3 21 4 0.W WD q q q q q q= − + + − ≥% % % % % % (32) 

With Wq%  fixed, the two roots of Eq. (31) form two root sur-
faces of 3rootε% = 3 2 3( , )root q qε% % % , bounded by the double root curves, 
whose precise forms are easily obtained. However, in most cas-
es, it is enough to have asymptotes that are given by [ 2q% , dr

3q% , 
dr
3 2(1 ) / (2 )Wq q q− % % % ], where dr

3q%  denote 
2 1/2 2

22 1 (1 ) /W Wq q q − ± + % % % .  
Fig. 1 shows the zero surfaces for Wq%  = ‒4. Note that one of the 
two root surfaces is almost a plane close to zero while another 
surface behaves like a hyperbola, with a singular point at 2 0q =% . 
To understand this behavior, consider 2 3q q% % , where two roots 
of Eq. (31) can be approximated as follows:
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% % % % % % ,

∼ ∼ (33)
 

The second root of (33) is almost zero if 3q% and Wq% are >> 1 
while the first one behaves as a hyperbola along the 2q%  axis.

Consider the case where the value of 13K% increases while 
other parameters are kept constant, which is frequently consider- 
ed to study the effect of coupling strength on autoionization 
spectra.4 Note that change in the value of 13K% does not simply 
bring about a change in 3q% alone. It also brings about a change 
in the value of Wq% . Therefore, knowing both 2q%  and 3q%  is not 
enough to determine the root surfaces of 2effq% = 0. The value of 

Wq% is also needed. This means that the different root surface 
corresponding to different Wq%  should be used for each 13K%  value.
Fig. 7 shows the root surfaces for the 13K%  values corresponding 
to the spectra of 4 different 13K%  values in Fig. 3. The cylinders 
are also shown at 2 3( , )q q% %  corresponding to each spectrum. 3q%  
and Wq% decrease in magnitude in the same proportion if the 
value of 13K%  increases in magnitude. This means that the cylin-
der moves toward the zero of 3q%  (or 2q% axis) along the axis par-
allel to 3q%  axis. For 1Wq%  , the asymptote of the double root of 
zero surfaces of 2effq%  becomes either 3 2q q=% %  or 2

3 (4 / )Wq q= −% %

2q% . The latter is almost equal to 3q% axis because 1Wq%  . This 
means that the region of the 2 3( )q q% %  plane bounded by the line 

3 2q q=% %  and 3q% axis can have real roots of 3ε% , which covers 
approximately half the entire plane of 2 3( )q q% % . When the coupling 
strength 13K%  is quite weak, 1Wq%   and the asymptotes become 

3 2(2 / )Wq q q= ±% % % , which means that the real roots are allowed on 
most of the entire 2 3( )q q% %  plane. 

There are 20 possible patterns of q reversals when the cases 
have no real roots, double real root and two different real roots 
are all counted, as shown in Fig. 2. In addition, one more pattern 
corresponding to the root of a linear equation is possible for 

2 0q =% . Therefore, in total, 21 patterns are possible for q rever-
sals. It may be argued that this consideration is purely mathe-
matical and should be born out in the real system in order to be 
accepted as a meaningful piece of work. But note that there are 
no limits on the real values to be taken by either the reactance 
matrix elements or the transition dipole moments which deter-
mine the 3 line profile indices and subsequently the q reversal 

≪

≪
≪

≫
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Figure 3. Effects of the widths of an interloper on dense Rydberg 
series. The smoothed spectra with instrumental half-width of 1 cm-1

are drawn with a heavy line. The spectra of the interloper itself are also
shown with a dotted line. The first, second and third ionization thre-
shold corresponding to channels 1, 2 and 3 are taken as 0, 6500, 10000
cm-1,  respectively. The respective transition dipole moments are taken
to be 1, 18, 150 a.u.. K% 12 = 0.02π , K% 23 = 0.1π. K%13 / π = 0.05, 0.1, 0.2, 0.3,
0.4 from the above. No phase renormalization was performed, i.e. µi =
0 (i = 1,2,3).
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Figure 4. Effects of the widths of the dense Rydberg series on the line 
profiles and widths in its own overlapping resonance spectra. The first,
second and third ionization threshold corresponding to channels 1, 2 
and 3 were taken as 0, 6500, 10000 cm-1, respectively. The respective
transition dipole moments are taken to be 1, 18, 150 a.u.. K% 13 = 0.3π,
K%23 = 0.1π. K% 12 / π = 0.02, 0.08, 0.32, 1.28, 5.12 from the above. No 
phase renormalization was performed, i.e. µi = 0 (i = 1,2,3).

patterns. [For the channel wavefunctions in Eq. (3), transition 
dipole moments are real.]

Model studies of overlapping resonances. The most syste-
matic studies on autoionization spectra due to an overlapping 
resonance were carried out by Lane, Connerade and colleagues.3 
Most of their extensive studies of overlapping resonances in 
autoionization were performed by scattering calculations where 
the transition dipole moments were absent and could not be 
accepted seriously.  Let us start by reproducing their interesting 
spectra showing a variety of aspects of overlapping resonances 
with the MQDT based on Ueda's17 formulation, which includes 
the transition dipole moments as a matter of fact. 

Fig. 3 shows the effect of the width of an interloper on the 

dense Rydberg series as 13K%  is varied progressively from 0.05π, 
via 0.1π, 0.2π, 0.3π to 0.4π. The interloper spectra alone are 
also included as dotted lines in the figure for comparison. The 
overall shapes of the spectra are the interloper spectra chopped 
by the lines of the dense perturbed series. Note that q reversal 
occurs around the peak of the interloper so that peaks of the 
dense series are mirrored around the peak of the interloper. As 
the width of the interloper increases, the shapes of the lines 
undergo a large change. The lower graphs show the q reversal 
straddling the intervening resonances extensively studied in 
Ref. [3-4]. It should be noted that the cross sections do not de-
crease to zero between successive autoionizing levels because 
of the instrumental smoothening with a bandwidth of 1 cm-1. 
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Figure 5. 2effq%  graphs corresponding to Fig. 3 excluding the last graph.
In autoionization spectra σ, the smoothed spectra with instrumental 
half-width of 1 cm-1 are drawn with a heavy line, the unsmoothed one
with a dotted line, the envelope with a dashed line, σmax with a dash- 
dotted line. This convention is applied in other autoionization spectra,
too.  
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Figure 6. 2effq%  graphs corresponding to Fig. 4 excluding the last graph. 
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(a) K% 13 = 0.05 π ( 3q%  = ‒954.9, Wq%  = ‒31.8) (b) K% 13 = 0.1 π ( 3q%  = ‒477.5, Wq%  = ‒15.9)
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(c) K% 13 = 0.2 π ( 3q%  = ‒238.7, Wq%  = ‒8.0)  (d) K% 13 = 0.3 π ( 3q%  = ‒159.2, Wq%  = ‒5.3)
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Figure 7. Zero surfaces of 2effq%  corresponding to Fig. 3 excluding the last graph. 2q%  = ‒286.5 for all cases.

(a) K% 12 = 0.02 π ( 2q%  = ‒286.5, Wq%  = ‒5.3) (b) K% 12 = 0.08 π ( 2q%  = ‒71.6, Wq%  = ‒1.3)
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Figure 8. Zero surfaces of 2effq%  corresponding to Fig. 4 excluding the last graph. 3q%  = ‒159.2 for all cases.
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Figure 9. Transition of an interloper line into the structured background. The same parameters as the ones in Fig. 3 were used except for K% 13, 
which varies from the top to the bottom graphs as 0.06π, 0.12π, 0.135π, 0.15π and 0.30π, respectively. 

Fig. 4 shows the effect of a progressive fourfold increase in 
12K%  from 0.02π to 5.12π. The figure confirms the resonance 

narrowing, the move of the resonance centers to the intermediate 
energies and change of q to q-1 in the case of a very strong in-
teraction for a single Rydberg series, the phenomenon reported 
by Mies5 for an auto-ionized Rydberg series, and the data report-
ed by Child21 for predissociated levels. In contrast to the compli-
cated explanation in Mies's work, the phenomenon is so easily 
explained by MQDT as reported in Ref. [10]. Lane, Connerade 
and colleagues noticed that the q reversal becomes less conspi-
cuous as the coupling strength increases.4 This suggests that q 
reversals could be used to access the coupling strength from the 
experimental data. However, the spectra show intensity enhan-
cement in a manner that differs from spectrum to spectrum. This 
indicates that the spectral behavior is more complicated than 
they thought. We will show that all these complicated behaviors 
can be explained easily using our analysis tools. 

The approach taken in Figs. 3 and 4 is the exploration of the 
dynamics through the progressive variation of one of the dyna-
mic parameters, such as K%12 or K%13. One drawback of this app-

roach is that the change in induced dynamics may not be related 
directly to the change in the inducing parameter and can be mis-
understood. Ueda's formula and its zero and pole structures 
provide an analysis tool that is different in this respect. They pro-
vide the disentanglement of various dynamics involved in the 
formula and can identify the dynamic parameters of simple phy-
sical origin. 

Before analysis, let us first describe the guiding principle of 
the analysis based on Ueda's formula and its zero and pole struc-
tures. The overall behavior of the auto-ionization cross section 
was determined from the spectrum of an interloper. The dense 
Rydberg series chops the interloper spectrum. Therefore, the 
interloper spectrum forms an envelope and serves as a structured 
background. The q reversals of the profile indices of the lines 
of dense Rydberg series are determined by the roots of the 
quadratic equations of 2effq%  = 0 and poles of 2effε%  at Wq− % and 

3q− % . The huge spectral enhancement from the interloper spec-
tra, given by 2

2effq%  + 1, occurs when the peak of the dense Ryd-
berg series lies close to the poles 3ε% = Wq− %  and 3q− %  of 2effq% and 
is characterized by the sharp peak. Near 2effq%  = 0, no spectral 
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Figure 11. Four patterns corresponding to 3 1 3 3 2r r Wq qε ε> − > > −% %% % , 
3Wq q− > −% %  and imaginary roots, 3 3 1 3 2W r rq q ε ε− > − > >% %% %  and Wq− >%

3 1 3 2 3r r qε ε> > −% % % cases are shown. The second ionization threshold was
changed to 8000 cm-1 from the previous graphs. (a) K%13 = 0.4π , K%23 =
0.1π. K%12 = 0.02π . (b) iD%  = 1, -0.18 and 1.5 a.u. for i = 1,2,3. K%13 = 0.4π,
K%23 = -0.1π. K% 12 = 0.02π . (c) iD% = 1, -0.18 and -1.5 a.u. for i =1,2,3. 
K%13 = 0.4π , K%23 = 0.1π. K% 12 = 0.02π . (d) iD%  = 1, 1.8 and ‒150 a.u. 
for i = 1, 2 and 3, respectively. K% 13 = 0.4π , K% 23 = 0.1π. K% 12 = 0.02π .
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Figure 10. Analysis of the dynamics involved in time delays. Ii = 0, 
6500, 10000 cm-1 (i = 1,2,3) . iD% = ‒1, 18, 150 a.u. (i = 1,2,3). K% 13 = 
0.3π , K% 23 = 0.1π. K%12 = 0.5π . µi = 0 (i = 1,2,3). See Eqs. (21) and (22) 
for the definitions of Dτ , isolated

2Dτ and the enhancement factor.

enhancement takes place and is characterized by the smooth 
change in the spectra.

Fig. 5 shows both the envelope graph and its enhanced version 
by 2

2effq%  + 1. The huge envelope consisted of several peaks at 
approximately 4040 cm-1 to the left-hand side of the dotted in-
terloper resonance peak in the first spectrum that was previously 
interpreted as a shifted resonance peak of the interloper (see Ref. 
[15]). The analysis shows that this huge envelope is not the 
shifted one but a huge enhancement of the lines of the dense 
Rydberg series by the pole at 3 Wqε = −% % . The tremendous width 
of the envelope is just that of the structure generated by the two 
roots of 2effq% , at which the enhancement ends is not the width 
of the true interloper peak. The second spectrum of Fig. 5 is 
similar the first one and will be bypassed. 

The third and fourth spectra have different types of 2effq%
graphs from the ones of the first 2. The pole 3 Wqε = −% % lies at 
the far left wing of the envelope, while most part of the envelope 
is governed by small 2effq%  and enhancement is suppressed. The 
spectra in Fig. 6 can be interpreted in the same way as for Fig. 
5. One feature absent in Fig. 5 but present in Fig. 6 is the large 
enhancement at the resonance peak of the interloper, which is 
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generated by the simple pole close to the peak position of the 
interloper.

Fig. 5 and Fig. 6 show that the behavioral changes in the au-
toionization cross sections are related directly to the patterns 
of the 2effq%  graphs. Therefore, the 2effq% graphs provide a very 
powerful and easy-to-use tool for analyzing autoionization 
cross section spectra. In Fig. 5, the patterns of the 2effq%  change 
from 3 3 3root W rootq qε ε< − < < −% %% %  to 3 3 3root root Wq qε ε< < − < −% % % %  bet- 
ween 0.10π and 0.20π when the value of 13K%  increases pro-
gressively. In Fig. 6, the patterns of 2effq%  change in a reverse 
order from that shown in Fig. 5; from 3 3 3root root Wq qε ε< < − < −% % % %  
to 3 3 3root W rootq qε ε< − < < −% %% %  between 0.02π and 0.08π when the 
value of 12K%  increases progressively. Why does such a change 
in pattern occur? In order to understand this, let us utilize the 
q zero surfaces in Fig. 1. Each graph in Fig. 5 and Fig. 6 is repre-
sented as a line in Fig. 1, and the increase in coupling strength 

13K%  corresponds to the movement along the 3q%  axis in the decrea-
sing direction. The increase in 13K%  also brings about a decrease 
in the magnitude of Wq%  as well as in 3q% . This suggests that dif-
ferent q zero surfaces should be used for different 13K% . For visi-
bility, the line will be replaced by a cylinder. Fig. 7 shows the 
movement of the cylinder toward the 2q%  axis ( 3q% = 0) as 13K%
increases in magnitude. Let Wq− %  lie between the two roots at 
first as in the case of the first spectra of Fig. 5. As the cylinder 
moves toward the 2q%  axis, the magnitude of Wq− %  decreases 
hyperbolically whereas the upper root plane decreases linearly 
and the lower root plane remains constant. This means that from 
some point, Wq− %  no longer lies in between the two roots. One in-
teresting question would be the possibility of another pattern 
change as the point moves further, beyond the double root point 
and toward the 2q%  axis. The pattern change in Fig. 6 can be ex-
plained in a similar manner. 

Fig. 3 shows another interesting aspect of the overlapping re-
sonance: the transition of an interloper spectrum from a line to 
a structured background. This phenomenon is discerned more 
conspicuously in the time delay spectra in Fig. 9. It shows that 
two peaks around the interloper resonance peak observed at the 
width of an interloper smaller than the line separation of a dense 
series disappear when the width becomes equal to the line sepa-
ration (190 cm-1, corresponding to 13K% = 0.13 π and ν3 = 5), and 
then reappears as a single peak when the width becomes larger 
than the line separation. The existence of a transition of the spec-
tra of an interloper from the lines into the structured background 
is confirmed.

The time delay spectra revealed another interesting pheno-
menon, as indicated in Eq. (21). Eq. (21) shows that the time de-
lay spectra are not decomposed into an envelope from an inter-
loper and lines of the perturbed dense Rydberg series. It is 
given by the unperturbed time delays of the dense Rydberg 
series and the enhancement factor, which contains the effect 
of the interloper only indirectly. This means that the overall be-
havior of the time delay spectra is determined by the dense Ryd-
berg spectra, which is in contrast to the autoionization spectra 
whose overall behavior is determined by the interloper spec-
trum. The third spectrum isolated

2Dτ  in Fig. 10 shows the typical 3ν
dependence of the time delay spectra of a Rydberg series, 
which is due to an increase in the orbiting period around the 
Rydberg orbitals. It should be noted that time delay does not go 

to zero between the consequetive lines of the Rydberg series 
in the spectrum of 

isolated
2Dτ . This is because the value of 12K%  is 

chosen as 2W%  = π/2 in which the width of each peak of the dense 
Rydberg series is the same as the line interval. In the stronger 
coupling strength, intensity narrowing was also observed as in 
the autoionization cross section spectra in Fig. 4. Note also that 

Dτ  is enhanced greatly by the enhancement factor conspicuous 
around the resonance peak of an interloper.

The above indicates that completely different dynamics are 
involved for the time delay spectra and autoionization spectra 
of the perturbed Rydberg spectra by an interloper whereas the 
dynamics of the two spectra are similar for the two channel sys-
tem composed of 1 open and 1 closed channel. As stated pre-
viously, the difference in dynamics may be understood if we 
recall that the absorption process is instant and the dominant 
process is determined by the magnitude of the transition dipole 
moments, which is the transition to an interloper line. Since the 
residence time or orbiting period is proportional to ν3, it is short 
for the lower line of the Rydberg series, which is the case for 
an interloper. Therefore, the excited electron rapidly leaks into 
the dense series, which has a much longer orbiting period. 

The q reversal patterns encountered in the previous figures 
were two, corresponding to 3 3 3root W rootq qε ε< − < < −% %% %  and

3 3 3root root Wq qε ε< < − < −% % % % . All other patterns in the already men-
tioned 21 possible patterns could be generated. Fig. 11 shows 
two other patterns besides these 2 for the energy intervals con-
taining several interloper cycles. 

Summary and Discussion 

A Rydberg series perturbed by an interloper is the simplest 
system showing complex resonance phenomena due to the 
overlapping resonances, and has attracted considerable research 
interest for more than three decades. The phase-shifted version 
of the multichannel quantum-defect theory (MQDT) was one of 
the most powerful tools to study this system. Although several 
groups developed the theories, diverse aspects of overlapping 
resonances like q reversal and intensity borrowing are not well 
understood. Ueda's unutilized formulation that disentangles the 
interloper spectra from the perturbed dense Rydberg series could 
be quite useful for exploring such aspects of overlapping reson-
ances. His formulation in its nascent form, though still powerful, 
can be made more powerful if reformulated. The pole structure 
in his formula, which explored following this line of thought, 
was found to take a simple form and allowed us to find simple 
quadratic equations for the zero surfaces of the line profile index 
q. The simple relations thus found allowed us to perform a deep 
analysis of the interesting q reversal phenomena.

Using the analysis tool based on Ueda's formula and its pole 
structures, we performed an investigation of the interesting sys-
tems studied by Lane, Connerade and colleagues, which con-
tained a range of overlapping resonances. This analysis tool not 
only provides easy access to what is occurring in the complex 
resonance spectra but also allows an examination of the unchart-
ed territory of spectra with the help of the q zero surfaces as a 
compass. 

Two interesting phenomena were found from a study of the 
time delay spectra. One interesting phenomenon is the transition 
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of the coarse intruder Rydberg series from the spectral line into 
the structured continuum by being dispersed onto the entire 
dense series. As another interesting phenomenon, overall beha-
vior of the time delays was governed by the dense Rydberg 
series, which is quite different from the overall behavior of the 
autoionization cross sections that are governed by an interloper. 
This suggests that different dynamics prevail for them, which 
is in contrast to the two channel system, where both quantities 
behave in a similar manner. The dynamics obtained in the pre-
sence of overlapping resonances is as follows. The absorption 
process is instant and dominated by a transition to the interloper 
line. The process is followed by rapid leakage into the dense 
Rydberg series, which has a longer residence time prior to ioni-
zation than that of the interloper state. This is because the orbi-
ting period is proportional to ν3 so that an excited electron has a 
shorter lifetime in the interloper state belonging to lower mem-
ber of the Rydberg series. This difference in dynamics can ex-
plain the previously observed22 symmetric shapes of the time 
delay spectra when the autoionization spectra are highly asym-
metric. 
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