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Human histamine H1 receptor (HHR1) is a G protein-coupled receptor and a primary target for antiallergic therapy. 
Here, the ligand-based three-dimensional pharmacophore models were built from a set of known HHR1 inverse 
agonists using HypoGen module of CATALYST software. All ten generated pharmacophore models consist of five 
essential features: hydrogen bond acceptor, ring aromatic, positive ionizable and two hydrophobic functions. Best 
model had a correlation coefficient of 0.854 for training set compounds and it was validated with an external test set 
with a high correlation value of 0.925. Using this model Maybridge database containing 60,000 compounds was 
screened for potential leads. A rigorous screening for drug-like compounds unveiled RH01692 and SPB00834, two 
novel molecules for HHR1 with good CATALYST fit and estimated activity values. The new lead molecules were 
docked into the active site of constructed HHR1 homology model based on recently crystallized squid rhodopsin as 
template. Both the hit compounds were found to have critical interactions with Glu177, Phe432 and other important 
amino acids. The interpretations of this study may effectively be deployed in designing of novel HHR1 inverse agonists.
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Introduction

Human histamine H1 receptor (HHR1) is one of the four his-
tamine receptors namely H1, H2, H3 and H4. These receptors 
involved in a variety of physiological actions such as inflamma-
tion, gastric acid secretion, neurotransmitter release and mast 
cell mediated chemotaxis upon binding to the biogenic amine 
called histamine.1,2 HHR1 belongs to class I of the G protein- 
coupled receptors (GPCRs) and it interacts with G proteins to 
activate phospholipase C.3 HHR1 is known to be involved in 
various inflammatory effects like smooth muscle contraction, 
negative inotropism and depolarization etc. GPCRs constitute 
the largest family of cell surface proteins involved in signal 
transduction.4,5 Intrinsically, they are the major targets for the 
antiallergic drug therapy due to the role of HHR1 in allergic 
reactions. Among the examples of available medicines inter-
acting with GPCRs antihypertensive beta-blockers, opioid re-
ceptor agonists such as morphine, histamine H1 and H2 receptor 
antagonists as anti-allergic agents and antacids, respectively, 
and anti-depressants such as clozapine have gained their clinical 
importance.6

It is believed that GPCRs activate their associated signal 
transduction pathways not only upon agonist activation but 
also in the absence of agonists, resulting in constitutive receptor 
activity. Such activity may be calmed down by so-called inverse 
agonists that were originally classified as antagonists. The con-
cept of constitutively active GPCRs is firmly rooted in receptor 
pharmacology. In order to explain all these one has to under-
stand a receptor that can exist in more than one state, one active 
(R*) and other inactive (R). Agonists and some drugs prefer 
the active state R*, while inverse agonists go for R.7 In this 

concept ‘neutral antagonists’ would not alter the R/R* distri-
bution. Various human diseases have been developed as results 
of constitutive receptor activity.8 It is evident that inverse ago-
nists are essential for the treatment of these diseases.9 Even well 
known HHR1 antagonists such as mepyramine, acrivastine, 
cetirizine, epinastine, loratadine are inverse agonists.8 Although 
an inverse HHR1 agonist would suppress any apparent consti-
tutive HHR1 activity, long term exposure of cells expressing 
constitutively active GPCRs to inverse agonists may result in 
receptor up-regulation. The development of novel inverse HHR1 
agonists would give a pharmacological tool to study the potential 
physiological role of constitutive HHR1 activity which is not 
yet clear.

In this study, we focused to develop a valid pharmacophore 
model for HHR1 inverse agonists, using it in virtual screening 
for new lead compounds and find their interactions with cataly-
tic residues of HHR1 by molecular docking. We have applied 
pharmacophore modeling and various molecular modeling me-
thodologies to achieve this goal. Our study revealed the pharma-
cophore features that are essential for a HHR1 inverse agonist 
and led us to identify the new molecules with the greater affinity 
for the HHR1. Our results were also proved with molecular 
docking study.

Methods

Pharmacophore model generation using HypoGen. Pharma-
cophore modeling calculations were carried out using CATALY-
ST 4.11 (Accelrys, San Diego, USA).10 Thirty of thirty six di-
verse ligands, which are known for their HHR1 affinity, were 
taken as training set to develop the pharmacophore model as 
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Table 1. Training and test set molecules

Name or code X n R1 R2 Ki (µM)

1a NH 6 H H 501.19
1b NH 8 H H 39.81
1c NH 9 H H 19.95
1d NH 10 H H 5.01
1e NH 11 H H 2.51
1f NH 12 H H 1.00
1g NH 13 H H 0.40
1h NH 14 H H 0.25
1i NH 8 -(CH2)4- 3.98
1j NH 10 -(CH2)4- 3.98
1k NH 12 -(CH2)4- 1.99

Name or code Isomer n Ki (µM)

PEA ortho 2 158.49
13a ortho 9 31.62
13b ortho 10 12.59
13c ortho 12 1.00
13d meta 10 7.94
13e meta 12 3.98
13f para 10 5.01
13g para 12 3.98

Name or code X n R1 R2 Ki (µM)

17a NH 0 Cl H 6.31
17b NH 0 CF3 H 3.98
17c NH 0 Cl Cl 19.95
19a S 0 H H 31.62
19b S 0 CF3 H 12.59
19c S 1 H H 63.10
19d S 1 Cl H 31.62

Name or code n R1 R2       R3 Ki (µM)

18b 1 H H phenyl 7.94
18c 2 H H phenyl 1.99
18d 3 H H phenyl 1.59
18e 4 H H phenyl 1.26
18f 2 H H cyclohexyl 10.00
18g 2 H H p-Br-phenyl 2.51
18h 2 H H p-CH3-phenyl 3.16
18i 2 -(CH2)4- phenyl 2.51

Mepyramine Ki = 0.002 µM Tripelennamine Ki = 0.01 µM

their Ki values range from 0.002 µM to 501.18 µM over five 
orders of magnitude (Table 1).8 Six compounds named PEA, 
1c, 18b, 13e, 18i and 13c were selected to be an external test 
set, which is used in the validation study of the generated phar-
macophore models. All compounds in the training set were 
built using the 2D/3D visualizer in CATALYST and minimized 
to the closest local minimum based on a modified CHARMm- 
like force field11 implemented within the Confirm module in 
CATALYST. CATALYST generated a group of representative 
conformational models for each compound in the training set 
using the Poling algorithm and the best conformational analysis 
method.12-14 Poling explicitly promotes conformational varia-
tion by forcing similar conformers away from each other. Every 
training set member is comprised of a collection of conformers 
that covers the conformational space accessible to the molecule 
within a given energy range. Diverse conformational models 
for each compound were generated using an energy constraint 
of 20 kcal/mol and 250 as the maximum number of confor-
mers. All other parameters used were the default values.

HypoGen module implemented in CATALYST was used for 
pharmacophore generation. The uncertainty factor for each 
compound represents the range of uncertainty in the activity 
value based on the expected statistical sprawling of biological 
data collection. Here, this factor was defined as the default value 
of 3. Mepyramine was mentioned as a ‘reference compound’ 
specifying a ‘Principal’ value of 2. The ‘Principal’ value and 
‘MaxOmitFeat’ values were set to 0 for all other compounds in 
the training set. Pharmacophore models were then generated 
and the top 10 scoring hypotheses were exported for further 
calculations. The activity value of each training set compound 
is estimated using regression parameters. The relationship bet-
ween geometric fit value and the activity value is utilized for 
this computation.

Pharmacophore model validation and database searching. 
In order to test whether the models identify active compounds 
and predict their activity accurately, we have used an external 
test set of compounds to evaluate the predictive ability of the best 
pharmacophore model.15,16 The test set included 6 compounds 
which are experimentally known for their HHR1 affinity. The 
pharmacophore model which scored a top CATALYST ‘Maxi-
mum Fit’ value, good cost difference and predicted the test set 
compounds with a high correlation was used as a query to screen 
the Maybridge (Maybridge Co. Ltd., UK) chemical database 
consisting of 60,000 structurally diverse small molecules. All 
queries were performed using the Best Flexible search data-
bases/Spreadsheet method. A molecule must fit all the features 
of the pharmacophore to be retrieved as a hit. Discovery Studio 
2.0 (DS) (Accelrys Co. Ltd., San Diego, USA) was used in fur-
ther screening to identify the drug-like molecules by applying 
various filters. Novelty of the final hit compounds was ensured 
using Scifinder Scholar search (https://scifinder.cas.org) and 
Pubchem bioactivity analysis (http://pubchem.ncbi.nlm.nih. 
gov/).

Homology modeling. Homology model for HHR1 was built 
using SWISS-MODEL program,17-21 an online automated homo-
logy modeling server. Recently determined squid rhodopsin 
structure (PDB ID: 2Z73) was used as a template. The output 
model was validated using PROCHECK and the manual in-
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Table 2. Statistical information of top 10 pharmacophore hypotheses generated by HypoGen program

Hypo no. Features Maximum Fit
Training set Test set

Total cost ∆cost RMSD (Å) Correlation (r) Correlation (r)

1 HHARP 11.291 125.714 44.770 1.043 0.875 0.916
2 HHARP 11.464 127.713 42.771 1.018 0.860 0.626
3 HHARP 11.763 128.040 42.444 1.105 0.859 0.564
4 HHARP 10.842 128.597 41.887 1.138 0.849 0.924
5 HHARP 12.144 129.056 41.428 1.126 0.854 0.925
6 HHARP 10.703 129.290 41.194 1.159 0.843 0.724
7 HHARP 9.385 132.879 37.605 1.259 0.812 0.832
8 HHARP 10.191 133.105 37.379 1.267 0.809 0.918
9 HHARP 8.946 133.773 36.711 1.278 0.805 0.558
10 HHARP 10.379 134.405 36.079 1.299 0.797 0.848

∆cost (null cost - total cost); null cost = 170.484; fixed cost = 109.033; configuration cost = 7; all cost values are in bits; H, A, R and P represent 
Hydrophobic, Hydrogen bond acceptor, Ring aromatic and Positive ionizable group respectively.

vestigation of transmembrane (TM) regions.22

Molecular docking. LigandFit, a modern docking program 
within DS, was used for the docking calculations. Protein co-
ordinates for docking were taken from the homology modeled 
structure of HHR1. The LigandFit docking procedure consists 
of two parts: a) cavity detection to identify and select the region of 
the protein as the active site for docking and b) docking ligands 
to a selected site.23 3D regular grids of points are employed for 
site detection and also for estimating the interaction energy of 
the ligand with the protein during the docking. All calculations 
were performed with the set of default parameters. The top 25 
docked conformations were allowed to be saved. Docking score 
was evaluated for the 25 saved ligand conformations using a set 
of scoring functions as implemented in DS program including 
LigScore1, LigScore2, PLP1, PLP2 and PMF. Consensus scor-
ing function had been used to evaluate and rank the ligand bind-
ing affinities.

Results and Discussion

Pharmacophore modeling. Ten hypotheses were produced 
by CATALYST using a training set of 30 compounds (Table 2). 
All the generated pharmacophore models possessed the follow-
ing five chemical features: hydrogen bond acceptor (HBA), ring 
aromatic (RA), positive ionizable (PI) and two hydrophobic 
(HP) functions. This means that the five chemical features could 
effectively map the chemical features of the training set com-
pounds and it is in line with the information that was reported 
recently.24 In general, the distance between the PI function (the 
basic nitrogen atom) and aromatic part of the ligand is expected 
to be around 6 Å.24 In our model, it is 4.2 Å between PI and RA, 
6.06 Å and 6.98 Å between PI and two HP features, respectively. 
These observations support our pharmacophore model for its 
reasonable spatial arrangements. A significant hypothesis must 
possess the large difference between null and fixed cost values.25 
In this study, the null cost value of the top 10 hypotheses is 
170.484, and the fixed cost value is 109.033. Configuration 
cost value is 7. In simple terms, there should be a large diffe-
rence between fixed cost and null cost with a value of 40 - 60 
bits for the unit of cost, which would imply a 75 - 90% pro-

bability for correlating the experimental and estimated activity 
data. The total cost of any hypothesis should be close to the 
fixed cost for a good model. In our study, all ten hypotheses 
have a total cost close to the fixed cost value. The difference 
between the fixed cost and null cost is 61.451 bits and may 
lead to a meaningful pharmacophore model. The cost difference 
between all ten hypotheses and the null hypothesis varies bet-
ween 45 and 36 bits with a low cost range, 9 bits, between the 
first and tenth hypothesis. However, the first six hypotheses 
have the cost difference more than 40. Therefore, we speculate 
that 75 - 90% possibility of representing a true correlation in the 
experimental and estimated activity data for these hypotheses. 
Table 2 shows these statistical parameters and predicting power 
of all pharmacophore models. The root mean square deviation 
(RMSD) indicates the quality of ‘prediction’ for the training 
set. The RMSD of all ten hypotheses ranged from 1.043 Å to 
1.299 Å. Besides this cost analysis, the most obvious method 
to validate the hypotheses is testing the ability to predict the 
activity of the training set compounds. In our case the fifth 
hypothesis (Hypo5) was found to have a maximum fit value 
for the training set compounds and the virtue of it is confirmed 
with their low error values for most active compounds (see table 
S1 in supplementary material). Maximum fit value indicates 
the overall fitness of all the training set compounds on a parti-
cular pharmacophore during pharmacophore generation. All 
first six hypotheses have scored well in terms of cost difference, 
RMSD and correlation values. However, Hypo5 scored a higher 
‘Maximum fit’ value and also predicted the test set with a high 
correlation coefficient (r2 = 0.925) consisting small deviation 
in terms of cost difference, RMSD and correlation values to 
that of first four hypotheses. Thus Hypo5 was considered as 
best hypothesis and denoted as HypoBest in further text and 
shown in Figure 1 with its inter feature distances. Table 2 lists 
the maximum fit values of all ten hypotheses. HypoBest pre-
dicted most of the activity values considerably for the training 
set compounds except for the least active compound 1a, with 
the correlation value (r) of 0.854. Figure 2 shows the HypoBest 
model and its overlay with most and least active compounds of 
the training set.

Figure 2A depicts one of the most active conformations of 
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Figure 1. HypoBest model consists of a HBA (green), a RA (brown), 
a PI (red) and two HP (cyan) features.

(A) (B)

Figure 2. Top scoring model HypoBest aligned to mepyramine (Ki = 
0.002 µM) (A) and compound 1a (Ki = 501.19 µM) (B) of training 
set. Pharmacophore features are colored as cyan for HP, red for PI, 
green for HBA and orange for RA.
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Figure 3. Correlation between experimental and estimated activity 
for the test set compounds. Correlation (r) = 0.925.

Table 3. Test set compounds listed with their experimental, estimated
activities and error values

Compound Experimental activity
Ki (µM)

Estimated activity
Ki (µM) Errora

PEA 158.489 110.0 ‒1.4
1c 19.953 7.0 ‒2.9

13c 1.000 1.1 1.1
13e 3.961 4.6 1.2
18b 7.943 8.6 1.1
18i 2.512 7.3 2.9

aPositive value indicates that the estimated Ki is higher than the 
experimental Ki; negative value indicates that the estimated Ki is lower 
than the experimental Ki.

mepyramine mapped onto HypoBest. Mepyramine is well align-
ed with all the features of the phamacophore model (HypoBest). 
Phenyl and pyridine rings overlap with the RA and one of two 
HP features while the methoxy, dimethyl amino groups and 
nitrogen of the pyridine ring overlap with second HP, PI and 
HBA features, respectively. Thus, the most active compound 
mepyramine in the training set maps well with the statistically 
most significant hypothesis, and the predicted activity of me-
pyramine toward HypoBest is well estimated. It is reported 
that the PI group of mepyramine interacts with the important 
Asp107 residue in the active site.26 Figure 2B shows the mapp-
ing of the training set compound 1a, for which the imidazole 
ring acts as RA feature. Long alkyl chain and its terminal amino 
group serve as HP and PI features, respectively, whereas the 
HBA and the other hydrophobic functionalities are missing. 

The predictive power of HypoBest was analyzed using an 
external test set containing six compounds with a high range 
of activity. Structure and activity data of test set compounds 
[PEA, 1c, 13c, 13e, 18b & 18i] are shown in Table 1. We have 
used Best Fit option of Compare/Fit module implemented in 
CATALYST for this procedure. The best conformation for every 
test set compound was generated and mapped upon the HypoBest 

model to predict the fit and estimated activity values. Estimated 
activity values of members of test set were predicted well to 
their experimental activity with low error values and the result 
is reported in Table 3. Furthermore, HypoBest was used to 
perform a regression analysis with the test set compounds in 
order to check the predictive power of this model. Linear regre-
ssion of the estimated activities for test set inhibitors versus 
the experimental ones showed a correlation value of 0.925 (Fig. 
3). This result supports the validity of the statistically signifi-
cant HypoGen hypothesis in predicting the affinity for HHR1. 
Only two compounds with the activity range of 0.002 - 0.1 µM 
have been included in the training set. Thus, the equal distri-
bution of test compounds with activity could not be obtained 
in the particular range. The validated pharmacophore model 
could be used to perform virtual screening as a powerful tool 
to retrieve new potent molecules for designing HHR1 inverse 
agonists. In our study, the validated pharmacophore model 
was used to search Maybridge database consisting of 60,000 
compounds. The query returned 3357 hits and they were all 
retrieved and subjected to screening by applying Lipinski rule 
of five,27 ADME (Absorption, Distribution, Metabolism and 
Excretion) properties such as human intestinal absorption, aque-
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Figure 4. Sequence alignment between target (HHR1) and template 
protein (Squid rhodopsin; PDB ID: 2Z73). TM regions are in gray.

(A) (B) (C)

Figure 5. Homology modeling of HHR1 structure. (A) Homology 
model structure of HHR1 (cyan) with amino acids in the binding site; 
(B) Structure of template protein, squid rhodopsin (brown); (C) Over-
lay of HHR1 model and template protein. All structures are shown in 
ribbon representation.

ous solubility and blood brain barrier penetration. Toxicity pre-
diction was also done in DS using hepatotoxic and CYP450 
2D6 inhibition models.28 This screening was used to filter in 
only the compounds with drug-like properties. The 72 molecules 
were obtained from this rigorous screening. Finally only four 
molecules were obtained as hits from the second screening by 
restricting the minimum estimated activity to 0.1 µM. The 
four hit compounds were then subjected to docking study in 
order to verify their affinity towards HHR1. Since the crystal 
structure of HHR1 is not available we have constructed the 
model structure by homology modeling method. Several scoring 
functions available in DS 2.0 were used to evaluate and rank 
the each conformation of 4 hit compounds for their HHR1 
binding affinities. 

Homology modeling of HHR1 structure. Structure modeling 
of HHR1 has been a great concern since the first crystal struc-
ture of GPCR was determined. Many research groups have 
obtained homology models for HHR1.26,29 In the beginning, it 
was bacterial rhodopsin used as template for the modeling 
followed by bovine rhodopsin (PDB ID: 1F88, 2.8 Å resolu-

tion). Here, high resolution structure of squid rhodopsin (PDB 
ID: 2Z73, 2.5 Å resolution) was used as template for the first 
time. Despite the controversies that exist on the validity of the 
GPCR models derived using rhodopsin structures as template, 
they have proved their applications on few drug-receptor inter-
actions.30 The sequence alignment of the HHR1 with squid rho-
dopsin is shown in Figure 4. Automated modeling mode of online 
comparative modeling server SWISS-MODEL was used to 
model the target structure. It showed about 21.5% identity, 
45.9% similarity in the TM regions between HHR1 and squid 
rhodopsin sequences. Though the target sequence shared a high 
similarity with the TM regions of the template, there was no 
equivalence for its intracellular G protein binding region from 
the template. This region shows the long gap in the alignment 
from the residue 236 to 395. It is reported that this region is 
involved in the binding of G protein.29 This long gap had no 
effect over the TM regions. The alignment was carefully inves-
tigated specially in TM regions for their integrity and we found 
that all of the critical structural elements known to be involved 
in the binding of its natural substrate, histamine, are intact. In 
addition to this the PROCHECK analysis was performed to 
validate the reliability of the model structure. It predicted 98.5% 
(86.2% of residues in most favored regions, 10.9% of residues 
in additional allowed regions and 1.5% of residues in generously 
allowed regions) of residues of the model structure present in 
the allowed regions. Crystal structure of squid rhodopsin (PDB 
ID: 2Z73) had no residue in the disallowed regions and showed 
a high quality to be a template. Till date, no model for HHR1 
has been constructed with this accuracy of 86.2% in most 
favoured regions using any rhodopsin as a template. Thus, our 
validation suggests that the backbone conformations of our 
model to be nearly as good as those of the template and could 
be a reliable model for further molecular docking study. Con-
structed model and its overlay upon the template protein are 
shown in Figure 5.

Molecular docking. We have docked histamine into the 
binding site and found its imidazole ring located within the 
liphophilic interaction range of Trp158 and far from Lys191.26 
However, we could not extract any information about the ago-
nist binding from this model since it was built based on the 
inactive conformation of squid rhodopsin. Inverse agonists are 
the class of compounds that prefers the inactive conformation of 
the receptor. Therefore, this model could be used in the docking 
analyses of inverse agonists. Trp158, Phe432, and Phe435 are 
arranged in favorable positions to form a lipophilic cavity and 
take part in antagonist binding.28 The other aromatic residues, 
which are potential lipophilic interaction points, were found in 
TM3 (Tyr108), at the end of EC3 (Phe184), in TM5 (Phe190, 
Phe199) and in TM6 (Phe424, Trp428, Tyr431). Lys191 in TM5 
was found in the internal side of the receptor, and seemed to be 
able to create an ionic interaction with the carboxylate group 
of zwitterionic inhibitors.26 We kept all the residues in mind 
while creating the binding site for the docking process.

All docking calculations were performed using LigandFit 
module as implemented in DS 2.0. The structural observation 
of the binding site of model suggested that one side of the 
active site of the receptor formed by a set of aromatic amino 
acids (F424, W428, Y431, F432 & F435) making it highly 
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Table 4. Comparison of dock scores between hit and known inhibitor molecules

Compound
Dock Scores

-LigScore1 LigScore2 -PLP1 -PLP2 -PMF Consensus

Mepyramine 0.41 0.67 126.41 126.39 186.25 6
Acrivastine 8.51 ‒13.82 121.12 126.85 178.16 5
RH01692 0.47 ‒1.98 138.89 130.47 197.29 6
SPB00834 0.88 ‒1.5 122.49 125.71 182.44 6

(A) (B)

Figure 6. Overlay of hit compounds RH01692 (A) and SPB00834 
(B) upon the HypoBest model.

(A)                                           (B)                                             (C)                                            (D)

Figure 7. Molecular docking results. The docked ligands are shown with their hydrogen bond interactions: (A) Mepyramine (orange); (B) 
Acrivastine (green); (C) RH01692 (red); (D) SPB00834 (dark blue). Hydrogen bonds are shown in magenta as dotted lines.

hydrophobic in nature while a blend of aromatic (Y108 & 
W158), negatively charged (D107 & E177) and polar uncharged 
(S111) amino acids form the other side. This arrangement of 
amino acids confirms that the inhibitor has to bind in such a 
way that its PI and aromatic groups positioned towards the 
negatively charged amino acid and hydrophobic part of the 
catalytic site, respectively. Our molecular docking studies re-
sulted the same positioning of ligands in the active site. Various 
cavities which can accommodate the ligand conformation were 
listed by LigandFit. The one formed by the above mentioned 
active site amino acids was chosen to dock the ligands. Mepy-
ramine from first generation, acrivastine from second generation 
antihistamines along with other training set compounds and 
four new hits retrieved from the Maybridge chemical database 
were subjected to docking study. Figure 6 shows the final hit 
compounds aligned to the HypoBest model. LigScore1, Lig-
Score2, PLP1, PLP2, PMF and consensus scoring functions were 
calculated. The results are summarized in Table 4 with hits 
those had relatively better docking scores. Mepyramine, which 
binds to HHR1 with high affinity, has generated strong hydrogen 

bond interactions with Asp107, Tyr108 and Glu177, and its two 
aryl groups were positioned in the lipophilic cavity, formed by 
other active site amino acids (Figure 7A). This orientation of 
mepyramine resembles the previously reported docking results 
by the other research group.26 Thus, these results provide the 
evidence that the active site remains intact during the homology 
modeling even though the different rhodopsin structures are 
used as templates. Acrivastine also has produced a similar type 
of orientation and the hydrogen bond interactions with the 
active site amino acids (Figure 7B). One of the hit compounds 
RH01692 has created the hydrogen bond interactions with the 
same set of amino acids and also with Phe432 which is one of 
the aromatic residues in the active site (Figure 7C) and this 
suggests that it may act as an another critical interaction point 
for a ligand. Indole part of it oriented unto the hydrophobic 
part of the active site and makes it available for hydrophobic 
interactions. On the other hand, SPB00834 has also had its 
phenyl ring with t-butyl substitution towards the hydrophobic 
part of the active site but showed hydrogen bond interactions 
only with Glu177 and Phe432 not with Asp107 and Tyr108 and 
this could be the reason for its low dock score compared to 
RH01692.

Two compounds, RH01692 and SPB00834, out off four hits 
retrieved from the Maybridge database have shown excellent 
HypoGen estimated activity, fit values and docking consensus 
score. Figure 7 shows their docking conformations in the active 
site compared with the known active compounds mepyramine 
and acrivastine and Figure 8 shows 2D representation of their 
molecular structures. The estimated activity values, CATALYST 
fit values, consensus docking scores for RH01692 and SPB 
00834 are 0.01 µM and 0.03 µM, 9.289 and 9.029, 6 and 6, 
respectively. RH01692 has scored equal to the tripelennamine, 
the second most active compound in the training set. RH01692 
and SPB00834 have scored fit values close to the most active 
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Figure 8. 2D representation of final hit compounds.

compound in the training set and also have formed hydrogen 
bonds with critical amino acids. SciFinder Scholar search and 
pubchem bioactivity analysis confirmed that both hit compo-
unds are novel and they have not been reported earlier for any 
antihistaminic activity. These results suggest that the hits obtain-
ed from this study can become superior leads in designing 
potent and novel HHR1 inverse agonists.

Conclusion

HHR1 is responsible for the various inflammatory effects of 
the monoamine, histamine. Pharmacophore and other molecular 
modeling techniques were applied in this study. The pharma-
cophore model HypoBest which was generated using training 
set of 30 compounds characterized by a high predictive ability. 
It was also proved on an external test set compounds with the 
correlation coefficient of 0.925. HypoBest model was used as 
a 3D query to search a database to identify the compounds that 
possess the required features. The query was successful in 
retrieving compounds for HHR1 inhibition. All hit compounds 
were subjected to the rigorous filtering for compounds with 
drug-like properties. Docking of the final hit compounds on to 
the homology modeled structure of HHR1 revealed their affinity 
towards the receptor. Docking score, internal binding energy 
and how well they docked into HHR1 binding site, particularly 
their interactions with important amino acids of HHR1 binding 
site have also been considered in the investigation. Despite the 
broad research none of the indole based antihistaminic mole-
cules have reached the market yet. Compound RH01692 is an 
indole based compound and novel substitutions on the structure 
would provide some way to have a handful of new leads. SPB 
00834 had a phenyl ring with novel substitutions as of the 
history of antihistamines concern. These results suggest that 
HypoBest can be used in screening of other available chemical 
databases to find out more novel scaffolds to design potent 
HHR1 inverse agonists. For the first time, HHR1 structure has 
been modeled using squid rhodopsin as template and effectively 
used in docking studies to identify the key interacting residues. 
This HHR1 model can reliably be used in structure based virtual 
screening for novel scaffolds those can effectively bind in the 
active site.
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