
Affinities Prediction of Imidazobenzodiazepines Using CART Bull. Korean Chem. Soc. 2009, Vol. 30, No. 11      2717

Classification and Regression Tree Analysis for Molecular Descriptor Selection 
and Binding Affinities Prediction of Imidazobenzodiazepines 

in Quantitative Structure-Activity Relationship Studies

Morteza Atabati, Kobra Zarei,* and Esmaeil Abdinasab

School of Chemistry, Damghan University of Basic Sciences, Damghan, Iran. *E-mail: zarei@dubs.ac.ir
Received May 17, 2009, Accepted October 4, 2009

The use of the classification and regression tree (CART) methodology was studied in a quantitative structure-activity 
relationship (QSAR) context on a data set consisting of the binding affinities of 39 imidazobenzodiazepines for the 
α1 benzodiazepine receptor. The 3-D structures of these compounds were optimized using HyperChem software with 
semiempirical AM1 optimization method. After optimization a set of 1481 zero-to three-dimentional descriptors was 
calculated for each molecule in the data set. The response (dependent variable) in the tree model consisted of the binding 
affinities of drugs. Three descriptors (two topological and one 3D-Morse descriptors) were applied in the final tree 
structure to describe the binding affinities. The mean relative error percent for the data set is 3.20%, compared with a 
previous model with mean relative error percent of 6.63%. To evaluate the predictive power of CART cross validation 
method was also performed.
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Introduction

Benzodiazepines (BDZs) are the drugs of choice in the phar-
macotherapy of anxiety and related emotional disorders, sleep 
disorders, status epilepticus, and other convulsive states; they 
are used as centrally acting muscles relaxants, for premedica-
tion, and as inducing agents in anesthesiology. They act via the 
benzodiazepine receptor site (BzR) on the γ-aminobutyric acid 
receptor (GABAA) family.1 These drugs have been subjected 
to extensive QSAR studies.2-8 GABAA receptors are the major 
inhibitory neurotransmitter receptors in the brain, in the site of 
action of many clinically important drugs, and are important 
drug targets representing the sites of action of benzodiazepines, 
barbiturates, and neurosteroids. These receptors are ligand-ga-
ted chloride channels composed of five subunits that can belong 
to eight different subunit classes. Most GABAA receptor sub-
types in vivo are believed to be composed of α-, β-, and γ-sub-
units. When BDZs bind to their receptors; they appear to induce 
a conformational change leading to an increase in the availability 
of GABAA receptors for GABAA, leading to higher chloride in-
flux and hyperpolarization. Receptors containing the α1-5-sub-
units in combination with any of the β-subunits and the γ2-sub-
unit are most prevalent in the brain. These receptors are sensitive 
to benzodiazepine modulation. The major receptor subtype is 
assembled from the subunits α1β2γ2 (diazepam-sensitive GABAA 
receptors).

Imidazobenzodiazepines are described novel pharmaceuti-
cally active substances which have a pronounced affinity to the 
central benzodiazepine receptors and which have only a low 
toxicity. There are a few QSAR studies on the imidazobenzo-
diazepines. Cook et al. in 1998, carried out a QSAR study on a 
number of imidazobenzodiazepines exhibiting affinities at re-
combinant α1β3γ2, α1β2γ2, α1β2γ2, α1β2γ2, and α1β2γ2 GABAA/ben-
zodiazepine receptor subtypes (α1, α2, α3, α4, α5, α6), by means 
of COMFA.9 Hadjipavlou-litina and coworkers in 2004, derived 

different equations for above mentioned compounds with two 
descriptors overall molar refractivity and Taft’s electronic 
effect.1 They obtained r2 value of 0.825 with three outliers and 
a mean relative error percent of 6.63% for the 38 investigated 
compounds.

In this study, another approach, classification and regression 
tree (CART) analysis was investigated. CART is a statistical 
method that explains the variation of a response variable using 
a set of explanatory variables, so called predictors. The method 
is based on a recursive binary splitting of the data into mutually 
exclusive subgroups containing objects with similar properties.10 
CART is extensively used for modeling and classification in 
several areas, such as medical diagnosis and prognosis,11-13 eco-
logy,14 agriculture15 and chemistry.10,16-17 A very interesting ad-
vantage of CART is the possibility to deal with large numbers 
of both categorical and numerical variables. Another advantage 
is that no assumption about the underlying distribution of the 
predictor variables is required (even categorical variables can 
be used). Eventually, CART provides a graphical representation, 
which makes the interpretation of the results easy. Therefore, 
we felt that CART could be a very effective method to select 
and relate molecular descriptors with the medical properties of 
molecules.

 
Theory

In 1984, Breiman et al. have introduced a methodology for 
classification and regression, called “classification and regre-
ssion tree analysis”.11 The goal of this statistical method was to 
explain the variation of a dependent variable, using a set of inde-
pendent predictors, via a binary partitioning procedure. CART 
works by splitting the parent node in two nodes, called child 
nodes. The process is repeated by treating each child node as 
a parent node. Each split is defined by a simple rule, usually 
based on a single explanatory variable. For numerical explana-
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tory variables, a splitting value (cut point) is selected to form two 
groups, which contain objects with values smaller and larger, 
respectively than the selected cut point. For categorical variables, 
a split is defined by relating one or more levels of the variable 
to a specific node. Trees are grown by selecting the splits in such 
a way that the impurity of the response variable within each node 
is minimized. The splitting procedure is continued until no fur-
ther split can be performed, i.e., all child nodes are homogeneous, 
or contain one or a user-defined minimal number of observa-
tions. The tree thus obtained is called the maximal tree and the 
terminal nodes, the so-called leaves, represent the final groups 
formed by the tree. This maximal tree will usually contain too 
many leaves and will overfit the learning data set, which will 
cause poor predictive abilities for new sample. 10 Therefore, the 
selection of an optimal tree with a good compromise between 
model fit and predictive properties is required. Thus, in general, 
CART analysis consists of three steps: (i) the maximal-tree build-
ing, (ii) the tree “pruning”, which consists of the cutting-off of 
nodes to generate a sequence of simpler trees, and (iii) the 
optimal tree selection.

Maximal tree building. CART is looking for the best possible 
variable, so called splitter, to divide the root node into two child 
nodes. To achieve this, the program looks at all possible vari-
ables, as well as at all possible values of the variable that can be 
used to split the data. The best splitter is defined as the variable 
(and associated splitting value) that will minimize the impurity, 
I, of the two child nodes. The goodness of a split is then defined 
as the impurity decrease between the parent node and its chil-
dren:

( , ) ( ) ( ) ( )p p p L L R Ri s t i t p i t p i t∆ = − − (1)

where s is a candidate split, PL and PR are the fractions of ob-
servations of the parent node tP that go into the child nodes tL and 
tR, respectively. The best splitter is the one that will maximize 
∆i(s, tP).

Different criteria to measure the impurity of a node have 
been proposed.11 For regression trees, the total sum of squares 
of the response values about the mean of the node is the most 
popular measure of impurity:10-11,17

2( ) ( ( ))
n

n
x t

i t y y t
∈

= −∑ (2)

where i(t) is the impurity of node t; yn, is the response value 
of observation xn belonging to node t; )(ty , the mean of all 
observations in node t. Absolute deviation about the node 
medians is another criterion which is used to build (robust) 
trees.10

Tree pruning. The resulting maximal trees are usually over-
sized and they describe the training set perfectly. It means that 
the model has been overfitted.10,18 Such trees are often difficult 
to interpret and their predictive ability for new observations is 
poor in general, since they tend to fit also the noise in the data. 
The selection of a smaller tree, derived from the maximal is then 
necessary for predictive purposes. The procedure of pruning 
generates a sequence of smaller trees, obtained by removing 

successively branches of the maximal tree. 
Optimal tree selection. Finally, the optimal tree is selected 

from the generated sequence of subtrees by evaluating the pre-
dictive error of the trees. The predictive error is often estimated 
using cross validation technique, especially for small data sets. 
In cross validation, some samples are randomly drawn from the 
data set, to test the tree, which is built with the rest of the data.10,17 
For a ten-fold cross validation, the original data set is divided 
into ten equal pairs (test sets), each containing a similar distribu-
tion for the response variable. A tree is then built using 90% of 
the observations (learning set), while the remaining 10% (test 
set) is used to test the tree. This step is repeated ten times using 
each time a different test set and the remaining observations as 
the learning set. The optimal tree is the one having the minimal 
cross validation error (most accurate tree). In practice, the op-
timal tree is chosen as the simplest tree with a predictive error 
estimate within one standard error of minimum. In this way, the 
chosen tree is the simplest with an error estimate comparable 
to that of the most accurate one.

Experimental

The binding affinities of 39 imidazobenzodiazepines were 
obtained from the paper by Hadjipavlou-Litina et al.1 and were 
shown in Table 1.

Molecular modeling and geometry optimization were per-
formed by HyperChem19 (version 7.0, Hyper Cube, Inc.). Dragon 
software was used for calculation of descriptors.20 SPSS soft-
ware (version 13.0, SPSS, Inc.) was used for running CART.

The 3-D structures of these compounds were optimized using 
HyperChem software with semiempirical AM1 optimization 
method. After optimization a total of 1481 0-, 1-, 2-, and 3-D de-
scriptors including constitutional, topological, molecular walk 
counts, BCUT-descriptors, GALVEZ topological charge indices, 
2-D autocorrelations, charge, aromaticity indices, Randic mole-
cular profiles, geometrical, RDF, 3D-MoRSE, WHIM descrip-
tors, GETAWAY, functional group counts, atom-centered frag-
ments, empirical and molecular properties were generated using 
Dragon software.

Results and Discussion

Maximal tree was grown using the binding affinities of 39 
imidazobenzodiazepines (log 1/Ki). A total of 1481 descriptors 
were used as explanatory variables. The regression tree was 
grown using Eq. (2) as impurity measure. The plot of maximal 
regression tree is shown in Fig. 1.

To select the optimal tree, ten fold cross-validation was used. 
The optimal tree was selected from the maximal tree, which was 
pruned back with no change in the split limit. Fig. 2 shows a 
plot of the prediction error, calculated as the root mean squared 
error of cross validation (RMSECV), as a function of the size of 
the tree (the tree size is defined as the number of leaves in a given 
tree). A horizontal line indicates the selection limit, situated one 
standard error above the minimal RMSECV. Applying this se-
lection limit suggests a four-leaf tree size as optimal.

Fig. 3 shows the selected tree, indicating the splitting rules, 
the average response value and the numbers of objects of the 
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Table 1. Ki binding affinities of imidazobenzodiazepines for the 
benzodiazepine receptor isoform

N'

N
COOR3

CH3O

R8

no Substituents R3R8
Observed 
log (1/Ki)

1 FRHCOOCR == 8523 , 9.097
2 ClRHCOOCR == 8523 , 8.167
3 BrRHCOOCR == 8523 , 7.585
4 CNRHCOOCR == 8523 , 8.000
5 28523 , CHCHRHCOOCR === 8.081
6 528523 , HCRHCOOCR == 7.690
7 528523 , HOCRHCOOCR == 7.951
8 38523 , NRHCOOCR == 8.481
9 28523 , CHCCHRHCOOCR ==== 8.426

10 CHCRHCOOCR ≡== 8523 , 7.547
11 ( )38523 , CHCCRHCOOCR ≡== 7.996
12 ( )[ ]338523 , CHSiCCRHCOOCR ≡== 6.917
13 ( )[ ]3328523 , CHSiCCHCRHCOOCR ≡== 6.523
14 ( ) ClRCHCOOCR == 8333 , 7.762
15 ( ) BrRCHCOOCR == 8333 , 7.943
16 ( ) IRCHCOOCR == 8333 , 8.013
17 ( ) OHRCHCOOCR == 8333 , 8.824
18 ( ) 38333 , OCHRCHCOOCR == 8.171
19 ( ) ( )238333 , CHNRCHCOOCR == 7.883
20 ( ) pyrroletetrahydroNRCHCOOCR −== 8333 , 8.237
21 ( ) yridinehexahydropNRCHCOOCR −== 8333 , 8.191
22 ( ) 38333 , NRCHCOOCR == 8.140
23 ( ) NCSRCHCOOCR == 8333 , 7.767
24 ( ) 28333 , NORCHCOOCR == 7.893
25 ( ) 528333 , HCRCHCOOCR == 7.830
26 ( ) CHCRCHCOOCR ≡== 8333 , 7.570
27 ( ) ( )[ ]338333 , CHSiCCRCHCOOCR ≡== 6.706
28 ( ) ( )[ ]3328333 , CHSiCCHCRCHCOOCR ≡== 6.561
29 ClRHCcyCOOCHR =−−= 85323 , 7.785
30 ClRCOCHR == 833 , 4.756
31 ClRHCOCR == 8943 , 5.801
32 ClROHCHR == 823 , 6.523
33 ClROCHCHR == 8323 , 6.523
34 ClRClCHR == 823 , 6.523
35 ClRHOCCHR == 85223 , 6.523
36 ( ) ClRHCNCHR == 825223 , 5.023
37 ( )[ ] ClRCHCHNCHR == 82323 , 5.377
38 ClRHCR == 8523 , 6.389
39 ClRHCR == 81153 , 5.588

39

> 1.50

 > 0.05                                           > 9.42

> 9.50                   > 2.13               > 1.73                  > 4.82    

> 1.04                                                                       > 1.00       > 1.70

> 1.02                                                       > 76.10                      > 0.20

SEige

X3sol                                           Mor32V

nBM                    JhetZ                  Ss                    Mor07M

ATS7e      7.764   5.589       4.890 8.454    8.960 MATS6m          J
(1)       (3)             (2)    (2)           (2)

6.812   MATS8m                                                        IAC    8.082 8.185   RBF
  (2)                                                                                          (2)    (4)

6.529       6.389                                           7.593  7.830             8.031    7.909
 (6)            (1)                                                 (4)      (4)                 (3)          (3)

Figure 1. Maximal regression tree, grown for the log (1/Ki) values of 
39 drugs using 1481 descriptors. For each leaf the mean log (1/Ki) 
value is given, as well as the number of objects (molecules), between 
the brackets. For each split the criterion is indicated.
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Figure 2. RMSECV versus tree size. The dotted line represents the 
selection limit.
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= 0.046 <                 0.046 >                = 9.42 <                  9.42 >

Figure 3. The optimal tree.
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Table 2. The amounts of selected descriptors

no SEige X3sol Mor32v 

1 1.84 8.68 0.02
2 1.73 9.47 -0.01
3 1.67 9.73 -0.02
4 1.66 9.63 -0.01
5 1.52 9.63 0.01
6 1.52 9.63 -0.05
7 1.77 9.75 -0.04
8 1.70 9.00 0.04
9 1.52 9.22 -0.02

10 1.52 9.63 -0.03
11 1.52 9.75 -0.06
12 0.99 10.05 0.02
13 1.24 11.05 -0.02
14 1.73 9.65 -0.04
15 1.67 9.91 -0.07
16 1.54 10.17 -0.05
17 1.77 9.38 -0.05
18 1.77 9.81 0.11
19 1.66 10.10 -0.01
20 1.66 11.23 -0.01
21 1.66 11.48 0.01
22 1.94 9.93 -0.04
23 1.45 10.07 -0.04
24 2.16 10.10 0.00
25 1.52 9.81 -0.10
26 1.52 9.81 -0.03
27 1.24 10.98 -0.01
28 1.24 11.23 -0.06
29 1.73 10.16 0.04
30 1.48 8.75 0.06
31 1.48 9.74 0.05
32 1.48 8.65 0.04
33 1.48 8.92 0.02
34 1.45 8.80 0.01
35 1.48 9.17 -0.01
36 1.38 10.10 0.13
37 1.38 10.71 0.12
38 1.24 8.65 0.04
39 1.24 9.42 0.05

Table 3. The predicted values of cross validation method

No of 
Predicted data

Observed log 
(1/Ki)

Predicted log 
(1/Ki)

Absolute 
relative error

1 9.097 8.577 0.057
2 8.167 8.707 0.066
3 7.585 7.939 0.047
4 8.00 7.918 0.010
5 8.081 7.913 0.021
6 7.690 7.934 0.033
7 7.951 7.920 0.004
8 8.481 7.782 0.035
9 8.426 8.801 0.045

10 7.547 7.941 0.052
11 7.996 7.918 0.010
12 6.917 6.671 0.036
13 6.523 6.715 0.029
14 7.762 7.930 0.022
15 7.943 7.921 0.003
16 8.013 7.917 0.012
17 8.824 7.922 0.102
18 8.171 7.909 0.032
19 7.883 7.924 0.055
20 8.237 7.905 0.040
21 8.191 7.908 0.035
22 8.140 7.910 0.028
23 7.767 6.576 0.153
24 7.893 7.923 0.004
25 7.830 7.927 0.012
26 7.570 7.940 0.049
27 6.706 6.694 0.002
28 6.561 6.710 0.023
29 7.785 7.929 0.018
30 4.756 5.447 0.145
31 5.801 5.186 0.106
32 6.523 6.715 0.029
33 6.523 6.715 0.029
34 6.523 6.715 0.029
35 6.523 6.715 0.029
36 5.023 5.380 0.071
37 5.377 5.292 0.016
38 6.389 6.730 0.053
39 5.588 5.309 0.050

leaves. Additionally, histograms are plotted that representing 
the distribution of the response for the objects within each node. 

For the optimal subtree with four terminal nodes, three mole-
cular descriptors were selected to describe the binding affinities 
data. The amounts of these descriptors are shown in Table 2. The 
first selected molecular descriptor is Eigenvalue sum from elec-
tronegativity weighted distance matrix (SEige), which is a to-
pological descriptor. Eigenvalue descriptors are independent 
of any molecular alignment, giving information about molecular 
size, shape and electronic properties.21 As can be seen in Table 2, 
in presence of electronegativity groups this descriptor amount 
increases. The other descriptor is also a topological one, the sol-
vation connectivity index chi-3 (X3sol). This descriptor is de-
fined in order to model solvation entropy and describe dispersion 
interactions in solution.21 Taking into account the characteristic 
dimension of the molecules by atomic parameters, they are de-
fined as:

n

a
K a 1m s k

q 1/ 2m 1
nk 1

a
a 1 k

L
1

2
δ

=

+
=

=

 
  
 χ =
 
  
 

∏
∑

∏
(3)

where La is the principal quantum number (2 for C, N, O atoms, 
3 for Si, S, Cl) of the ath atom in the kth subgraph and δa the 
corresponding vertex degree; K is the total number of mth order 
subgraphs; n is the number of vertices in the subgraph.21 As 
Table 2 shows, the amount of this descriptor is high for the 
molecules containing atoms with big principal quantum number 
such as Si and Cl. The third selected descriptor is 3D-Morse- 
signal32 (Mor32v) from 3D Morse descriptors, 3D-molecule re-
presentation of structures based on electron diffraction.21 These 
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Table 4. Verification of statistical validity of the model.

No of predicted data

The mean 
square error 

of calibration 
set

The mean 
square error 
of prediction 

set

R2

(calibration 
set)

R2

(prediction 
set)

The mean 
relative error 
of prediction 

set

The mean 
relative error 
of calibration 

set

Prediction 
set

1, 5, 10, 15, 20, 25, 30, 35, 39 0.8070 0.1133 0.9429 0.9493 4.19 2.94 Ser 1
2, 6, 12, 16, 22, 26, 29, 32, 36, 38 0.9461 0.8770 0.9169 0.9369 3.84 3.20 Ser 2
3, 7, 11, 17, 19, 21, 27, 31, 34, 37 0.9460 0.1571 0.9113 0.8931 3.93 3.39 Ser 3
4, 8, 9, 13, 14, 18, 23, 24, 28, 33 0.5850 0.1993 0.9529 0.7570 3.63 2.96 Ser 4
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Figure 4. Log (1/Ki) versus the explanatory variables causing the 
splits in Fig. 3, (a) SEige, (b) X3sol, (c) Mor32V. The vertical line 
represents the limit value to divide into two child nodes.

descriptors are based on the idea of obtaining information from 
the 3D atomic coordinates by the transform used in electron di-
ffraction studies for preparing theoretical scattering curves.

The relationships between the selected variables (from Fig. 3) 
and log (1/Ki) are shown in Fig. 4. The limit values defining 
the splits are indicated by a vertical line. Only the molecules 
relevant for a specific node are plotted. In Fig. 4a, for instance, 
all 39 molecules are plotted, whereas only 24 molecules are 
represented in Fig. 4b. The first split divides the data into two 
groups, which contain molecules with SEige values below and 
above 1.5, respectively. The second and third split divide the 
data into two groups, with molecules with X3sol values below 
and above 9.42, and Mor32v values below and above 0.046, 

respectively. The log (1/Ki) values are divided into two groups 
by these splits, very well.

The optimal tree was applied for the prediction of the whole 
data set. The mean relative error and R2 were obtained as 3.20% 
and 0.9211, respectively. It has better prediction power rather 
than MLR model1 with the mean relative error of 6.63% and 
R2 of 0.8240.

In addition to the previous MLR model,1 another MLR mo-
del was constructed with three descriptors which were selected 
between 1481 by stepwise selection method in SPSS software. 
These descriptors were C-041 (atom-centered fragments), BEH-
P7 (highest eigenvalue n.7 of Burden matrix/weighted by atomic 
polarizabilities) and SHP2 (average shape profile index of order 
2 Randic molecular profiles). Then one MLR equation was de-
rived for these descriptors as:

ilog(1/ k ) 54.118 7.555 2.433 0.176
(C 041) 14.833 2.056(BEHP7)
21.104 5.866(SHP2)

= ± + ±
× − − ±
− ± (4)

The mean relative error and R2 for this model were obtained 
as 3.85% and 0.8914, respectively.

To evaluate the predictive power of CART, leave one out cross 
validation method was also performed. The minimal tree built 
from the training sets always contained four leaves. The results 
were shown in Table 3. The mean relative error and Q2 were 
3.95% and 0.8736, respectively.

To make sure the demonstration of the absence of a chance 
correlation, the whole data set was divided into four subsets, 
and each subset was predicted by using the other three subsets 
as the training set. The results were shown in Table 4.

Conclusion

The main aim of the present work was the development of 
a QSAR method using classification and regression tree me-
thodology for binding affinities of 39 imidazobenzodiazepines 
for the α1 benzodiazepine receptor. The generated tree was 
evaluated and applied for the prediction of binding affinities 
of imidazobenzodiazepines. The results have shown that this 
methodology has good prediction power for this purpose. The 
application of CART to this data set has demonstrated that the 
CART analysis is able to perform a better prediction than MLR 
method in terms of prediction accuracy. Moreover, the output 
of rules sets from the CART analysis can provide useful insight 
into the relationships between the response and the predictor 
variables and the relative importance of predictor variables. The 

Ki
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statistical results were compared with MLR method results.
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