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A Stereoselective Synthesis of C26-C36 Fragment of Arenicolide A
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Scheme 1. Retrosynthesis
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Scheme 2. Synthesis of C26-C36 Fragment (4). (a) n-Bu2BOTf (1.5 
eq), Et3N (1.6 eq), butyraldehyde (2.0 eq), CH2Cl2, ‑78 oC, 4 hr, 96%. 
(b) TBSOTf (1.2 eq), 2,6-lutidine (2.0 eq), CH2Cl2, ‒78 oC, 3 hr, 
84%. (c) LiBH4 (1.12 eq), water (1.12 eq), ether, rt, 45 min, 94%. (d)
(COCl)2 (2.5 eq), DMSO (4.5 eq), Et3N (7.5 eq), CH2Cl2, ‒78 oC, 1.5 
hr, 91%. (e) Ph3P=C(Me)CO2Et (2.5 eq), benzene, reflux, overnight, 
92%. (f) DIBAL (5.0 eq), CH2Cl2, ‒78 oC, 2 hr, 94%. (g) mCPBA (1.5 
eq), K2HPO4 (3.0 eq), CH2Cl2, rt, 18 hr, 72%. (h) (COCl)2 (2.0 eq), 
DMSO (4.0 eq), Et3N (5.0 eq), CH2Cl2, ‒78 oC, 40 min, 88%. (i) (-)- 
Ipc2BOMe (1.2 eq), allylmagnesium bromide (2.0 eq), ether, ‒100 
oC, 3 hr, 67%. (j) TBSOTf (1.5 eq), 2,6-lutidine (2.0 eq), CH2Cl2, ‒78 
oC, 30 min, 88%.

Recently, arenicolides A (1) and B (2) were isolated from 
the large-scale fermentation of the S. arenicola strain CNR- 
005 and its relative stereochemical relationship except C-12, 
C-30, and C-31 chiral centers was proposed by 1H NMR, 13C 
NMR, Mass, IR, UV, CD, chemical degradation methods.1 
Arenicolides A (1) and B (2) are 26-membered macrolides 
with three conjugated dienes and nine chiral centers in the 
ring. There is one side chain which comprises the C-26 ~ C-36 
carbon chain with five consecutive chiral centers. Arenicolide 
A (1) also showed moderate anti-cancer activity toward the 
human colon adenocarcinoma cell line HCT-116 (IC50; 30 µg/ 
mL) and three cell lines in the National Cancer Institute, and 
no activity against antimicrobial assay using methicillin- 
resistant S. aureus (MRSA) and vancomycinresistant E. 
faecium (VREF).1

Arenicolide C (3) was also isolated along with arenicolides 
A (1) and B (2). And we proposed that the cyclic ether moiety 
in 3 might be derived biologically from arenicolide A (1) via 
the acid-catalyzed opening of epoxide and SN2 type addition 
of the C-33 hydroxyl group. In this paper, we report the 
stereoselective synthesis of the plausible C-26 ~ C-36 side 
chain (10) of arenicolide A (1) based on this assumption.

Retrosynthesis is summarized in Scheme 1. The homoallyl 
chiral center at C-31 of 4 would be introduced by asymmetric 
allylation of aldehyde.2 Conformational control from the 

allylic 1,3-strain and approach of the epoxidizing reagent anti 
to the methoxy group in 5 should provide the desired stereo-
chemistry of C-30 and C-31 epoxide in 4.3 Finally, diastereo-
selective 1,2-syn aldol strategy of α-methoyacetate moiety 6 
would be used to construct the C-32 and C-33 chiral centers.4

The synthesis of target molecule 10 was summarized in 
Scheme 2. Evans-syn aldol reaction of α-methoyacetate 6 with 
n-butanal provided the 1,2-syn aldol product in 96% yield,4 
and the free β-hydroxyl group was treated by TBSOTf and 
2,6-lutidine to afford the TBS-ether 7 in 84% yield. The chiral 
auxiliary group of 7 was removed by reduction with LiBH4 in 
94% yield,5 the resulting hydroxyl group was oxidized by 
Swern oxidation in 91%, yield, and the resulting aldehyde was 
treated with stabilized Wittig reagent to afford the α,β-un-
saturated ester 8 in 92% yield. The ester group of 8 was reduced 
to primary alcohol by DIBAL in methylene chloride in 94% 
yield and the diastereselective epoxidation by mCPBA 
provided the desired epoxide 9 and its isomer in 72%.3 Swern 



1444      Bull. Korean Chem. Soc. 2009, Vol. 30, No. 7 Communications to the Editor

OMe

R H
H CH2OH

Me

OMe

RH
H CH2OH

Me

A B

OMe

R H
H Me

OH"O"

OMe

R H
H Me

OH
"O"

A-1 A-2

OTBS

OMe

H

Me
HO

O

9

a, b
OH

OMe

H

Me
BnO

O

OMe

BnO
Me OH

OO

O

d

11

13

c

O

OMe

H

Me
BnO

O

12

NMe2

O

O
O

O Ha

Hb
R
OMe

Hc

R'

Ha

Hb

Hc

Scheme 3. Confirmation of relative stereochemistry of epoxide 9. (a) 
BnBr (1.10 eq), NaH (1.10 eq), n-Bu4NI (0.40 eq), THF, rt, 3 hr, 91%. 
(b) TBAF (2.5 eq), THF, rt, 3.5 hr, 63%. (c) Dimethylcarbamyl 
chloride (1.5 eq), NaH (1.2 eq), DMAP (0.3 eq), DMF, rt, 8 hr, 87%. 
(d) BF3․OEt2 (1.6 eq), CH2Cl2, rt, overnight, 52%.

oxidation of primary alcohol 9 (88%) and chiral-ligand assisted 
asymmetric allylation of the resulting aldehyde (67%)2 produced 
the homoallylic alcohol with the correct stereochemistry at 
C-29 in 67% yield along with its isomer in 19% yield. Finally, 
protection of the secondary alcohol with TBSOTf and 2,6- 
lutidine completed the synthesis of plausible C-26 ~ C-36 side 
chain moiety (10) of arenicolide A (1).

The origin of diastereoselectivity in the epoxidation reaction 
can be rationalized by conformational preferences of confor-
mation A over conformation B due to the A1,3-strain.6 In 
addition, hydroxyl-group directed epoxidation7 and anti-peri-
planar approach of the electrophilic oxygen to the best σ- 
electron acceptor (methoxy group)8 clearly lead to the desired 
stereochemistry in 9 through the assembly A-1 over the A-2.

In order to further confirm the relative stereochemical 
relationship of epoxide 9, the primary hydroxyl group of 9 
was converted to the benzyl ether by treatment with sodium 
hydride and benzyl bromide in THF in 91% yield, and the TBS- 
ether was deprotected by TBAF in THF to give the secondary 
alcohol 11 in 63% yield. After conversion of the secondary 
alcohol 11 to carbamate 12 by reaction with dimethylcarbamyl 
chloride in 87% yield, Intramolecular BF3-assisted epoxide- 
opening and cyclization were carried out in methylene chloride 
to afford the cyclic carbonate 13 in 52% yield.9 NOE experi-
ment of 13 confirmed the relative stereochemistry of 13 and 
therefore that of 9, an intermediate in the synthesis of target 
molecule 10.10

In summary, the plausible C-26 ~ C-36 side chain 10 of 
arenicolide A (1) was prepared concisely and efficiently in 10 
steps. The key steps are Evans 1,2-syn aldol reaction, diastereo-
selective epoxidation, and asymmetric allylation of aldehyde.
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10. [α]D= +11.2 (c = 0.0017 MeOH); 1H NMR (CDCl3, 500 MHz) δ
5.86 ~ 5.81 (m, 1H), 5.10 ~ 5.03 (m, 2H), 3.78 ~ 3.74 (dd, 1H), 
3.38 (s, 3H), 3.29 ~ 3.27 (dd, 1H), 2.93 ~ 2.90 (m, 1H), 2.84 ~ 
2.82 (d, 1H), 2.45 ~ 2.40 (m, 1H), 2.33 ~ 2.29 (m, 1H), 1.66 ~ 
1.64 (m, 2H), 1.50 ~ 1.47 (m, 2H), 1.35 (s, 3H), 0.90 (s, 9H), 0.88 
(s, 9H), 0.087 (s, 3H), 0.079 (s, 3H), 0.059 (S, 3H), 0.035 (s, 3H); 
13C NMR (CDCl3, 125 MHz) δ 135.276, 117.008, 80.291, 
76.892, 74.172, 60.052, 58.558, 39.179, 35.752, 26.227, 26.022, 
13.352, ‒4.239, ‒4.287; IR (neat) 2949, 2930, 2857, 1470, 1378, 
1243, 1104, 914, 831, 779, 660 cm-1; HRMS (ESI) calculated for 
C25H52O4Si2 [M+Na]+ m/z 495.3301, found 495.3305.


