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Silent information regulator 2 (Sir2) or sirtuins are NAD(+)-dependent deacetylases, which hydrolyze the acetyl-
lysine residues. In mammals, sirtuins are classified into seven different classes (SIRT1-7). SIRT1 was reported to be 
involved in age related disorders like obesity, metabolic syndrome, type II diabetes mellitus and Parkinson’s disease. 
Activation of SIRT1 is one of the promising approaches to treat these age related diseases. In this study, we have 
used HipHop module of CATALYST to identify a series of pharmacophore models to screen SIRT1 enhancing 
molecules. Three molecules from Sirtris Pharmaceuticals were selected as training set and 607 sirtuin activator 
molecules were used as test set. Five different hypotheses were developed and then validated using the training set 
and the test set. The results showed that the best pharmacophore model has four features, ring aromatic, positive 
ionization and two hydrogen-bond acceptors. The best hypothesis from our study, Hypo2, screened high number of 
active molecules from the test set. Thus, we suggest that this four feature pharmacophore model could be helpful to 
screen novel SIRT1 activator molecules. Hypo2-virtual screening against Maybridge database reveals seven 
molecules, which contains all the critical features. Moreover, two new scaffolds were identified from this study. 
These scaffolds may be a potent lead for the SIRT1 activation.
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Introduction

Sirtuin belongs to the class III histone deacetylase (HDAC) 
family.1 This HDACs are classified into four different classes: 
class I contains HDACs 1-3 and 8, class II contains HDACs 
4-7, 9 and 10, class III contains sirtuins and class IV contains 
HDAC 11. Several reports support that sirtuins are NAD(+)-
dependent histone deacetylase proteins.2-4 To date, in human 
seven types of sirtuins have been identified and they all shares 
the same catalytic domain but differ in N- and C-terminals. 
SIRT1, 2, 3, 5 and 6 are NAD dependent deacetylases, SIRT4 
and 6 are ADP-ribosyltransferases.5,6 In addition, SIRT7 is 
involved in both ADP-ribosyltransferase and rDNA transcrip-
tion.7 Sirtuins play a major role in deacetylation that couples 
lysine deacetylation to NAD+ hydrolysis to produce the 
deacetylated substrate O-acetyl-ADP-ribose  and nicotin-
amide.3 

SIRT1 plays a vital role in insulin signaling and glucose 
metabolism thus it is an excellent target to treat type II diabetes, 
obesity and metabolic syndrome by enhancing its function.8,9 
Except SIRT1, all other sirtuins (SIRT2-7) consist of approxi-
mately 400 amino acids, whereas SIRT1 consists of 744 
amino acids. It composed of two domains, namely, Rossman 
fold (large) domain and zinc binding (small) domain. NAD is 
a co-factor for sirtuins where it binds to the cleft between the 
two domains (large and small domain), immediately adjacent 
to the acetylated peptide binding tunnel.10 The N-terminal 
amino acids G183-I225 play a critical role to enhance the 

activity.11,12 
Sirtuins are vastly expressed in several adult tissues such as 

brain, heart and skeletal muscle. SIRT1 is known to interact 
with several important transcription factors like p53, p65 
(NF-kB), MyoD and regulates their activities.13 Therefore, 
sirtuins are crucial targets to design activators and inhibitors. 
There are two potential conceptual modes for activating 
sirtuins: direct and allosteric methods.14 In this work, we 
mainly focus on allosteric method to design activator mole-
cules for SIRT1. Some activators have been reported, e.g., 
resveratrol, fisetin and butein, but all these compounds are 
plant polyphenols.15,16 Resveratrol is a natural substrate, which 
can be found in red wine and activates SIRT1 and extends 
lifespan of mammals.17,18 

The aim of this study is to generate a pharmacophore model 
based on common features of molecules, which could enhance 
the SIRT1 activity. It was achieved using HipHop module 
from the CATALYST software.19 The constructed pharmaco-
phore model has been used for screening the large database to 
identify the new molecules that are presumably able to 
activate SIRT1. We found that our four feature pharmacophore 
model (Hypo2) screened large number of highly active mole-
cules of SIRT1 activators from the test set. Among these four 
features in Hypo2, the ring aromatic and the positive ionization 
features appear to play a vital role for the molecules to be a 
SIRT1 activator. Virtual screening revealed seven molecules 
(two scaffolds) with all the required critical features.  
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Figure 1. Standard molecules for training set. Chemical structures of three molecules from Sirtris Pharmaceutical which are used as training 
set (SRT1720, SRT1460 and SRT2183). Reseveratrol is a natural substrate for sirtuin1 activator.20

Table 1. Chemical feature compositions for the five hypotheses

Name No. of 
Features HBA HBD RA Z H P

Hypo1 3 2 1 0 0 0 0
Hypo2 4 2 0 1 0 0 1
Hypo3 5 2 1 0 0 1 1
Hypo4 6 2 1 0 1 2 0
Hypo5 7 3 0 0 1 2 1

HBA: Hydrogen Bond Acceptor, HBD: Hydrogen Bond Donor, RA: 
Ring Aromatic, Z: Hydrophobe Aromatic, H: Hydrophobe, P: Positive 
Ionization.

Methods

Pharmacophore Modeling. Pharmacophore modeling is 
one of the most powerful techniques to classify and identify 
key features from a group of molecules such as active and 
inactive compounds. Chemical features in the hypothesis or 
pharmacophore model will furnish a new insight to design 
novel molecules that can enhance or inhibit the function of the 
target and will be useful in drug discovery strategies. HipHop 
module from CATALYST software was used to develop 
pharmacophore models. To date, there is no three-dimensional 
structural information for SIRT1, especially for the allosteric 
site. Therefore the common feature pharmacophore modeling 
method was adopted to predict the potency of SIRT1 activators. 

In order to generate a pharmacophore model, three mole-
cules were taken from Sirtris Pharmaceuticals as a training set 
(Fig. 1).20 All compounds were built using ISIS draw and 
minimized using CATALYST software to the closest local 
minimum by applying the Charmm-like force field.21 Maxi-
mum number of 250 conformers were generated utilizing the 
best conformational analysis with an energy threshold of 20 
kcal/mol above minimum global energy value.22-24

Different types of chemical features for each molecule in 
the training set were examined using feature dictionary from 
CATALYST software. By consolidating all the available fea-
tures, six common features were used to generate the hypo-
thesis: hydrogen-bond acceptor (HBA), hydrogen-bond donor 
(HBD), hydrophobe (H), hydrophobe aromatic (Z), ring aro-
matic (RA) and positive ionization (P). The training set was 
taken for HipHop module to generate the common feature 
hypothesis. Five different hypotheses were generated (Table 
1) with different combination of the above features. These 
five hypotheses were validated using the test set which includes 
607 molecules having a wide range of activity values. Based 
on the activity values the test set molecules were divided into 
four different sets. The hypothesis that screened high number 
of molecules from the active set and low number of molecules 
from the inactive set are considered to be the best hypothesis 
to screen SIRT1 activators.

Database Search for New Hits. In order to find novel mole-
cules, which include all the desired chemical features to acti-
vate SIRT1, the best hypothesis model, Hypo2 was used to 

screen Maybridge database available in CATALYST software. 
The Best Flexible Search Database/Spread Sheets method in 
CATALYST was used for the database search to find out 
similarly featured molecules. The hit molecules from May-
bridge were further refined by calculating the solubility, 
absorption, and Lipinski’s rule-of-five to avoid false positives. 
In order to validate the good quality of our hypothesis, we 
screened the compounds that are related to our chemical 
features and the resultant molecules were superimposed with 
the training set molecules.26 

Result and Discussion

Training Set and Test Set Construction. Three molecules 
were taken from Sirtris Pharmaceuticals as a training set to 
generate a series of pharmacophore models (Fig. 1). In order 
to evaluate and validate the generated pharmacophore models 
a test set was prepared and cross validated.25 The 607 mole-
cules, which are structurally different from the training set 
were selected to prepare the test set. We sorted the test set 
molecules into four different sets depending on the activity 
data. They are active (A), moderate (M), least active (LA) and 
inactive (IA) set. Active set contains 176 most active com 
pounds within the range of 0-5 µM, the moderate set contains 
191 moderately active compounds within the range of 5-50 
µM, the least active set contains 58 least active molecules 
within the range of 150-200 µM and the rest 182 inactive 
molecules are classified  as an inactive set. 

Evaluation of Hypotheses. In this study, we have generated 
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Table 2. The numbers of molecules screened by each hypothesis

Pharmacophore A set 
(176)

M set 
(191)

LA set 
(58)

IA set
(182)

Hypo1 20 17 6 7
Hypo2 47 45 5 10
Hypo3 5 1 0 0
Hypo4 1 2 1 1
Hypo5 1 0 0 0

A Set: Active Set, M set: Moderated set, LA set:  Least Active set, IA set:
InActive set.

Figure 2. Comparative view of Hypo2 (4-feature) pharmacophore 
and Hypo1 (3-feature).

A B C D

HBA HBD RA P H Z
Figure 3. Comparative view of pharmacophore features with molecule fit for Hypo2-5. (A) Hypo2 is a four feature pharmacophore of two HBA,
one RA and one P (B) Hypo3 is a five feature pharmacophore of two HBA, one HBD, one H and one P (C) Hypo4 is a six feature pharmacophore
of two HBA, one Z, one HBD and two H (D) Hypo5 is a seven feature pharmacophore of three HBA, one Z, two H and one P. 

five different hypotheses (Table 1) based on the training set. 
All the five hypotheses were generated using HipHop module 
from CATALYST software. The test set is used to examine the 
pharmacophore model. The test set contains 607 structurally 
distinct molecules from the training set, which were prepared 
adopting the same protocol as the training set molecules were 
prepared. The best hypothesis was selected depending on the 
number of the molecules, which were screened from the four 
different sets constructed based on the activity values of  the 
test set molecules (Table 2).

The Hypo1 screened 20 molecules out of 176 molecules 
from A set, 17 molecules out of 191 molecules from M set, 6 
molecules out of 58 molecules from LA set and 7 molecules 
out of 182 molecules from IA set. The highest numbers of 
molecules were screened from A and M set (Fig. 2). To iden-
tify the essential features and to increase the quality of the 
pharmacophore, we refined this hypothesis by adding and 
deleting some of the features like RA, P, Z and HBD. In the 
first modification, HBD group was obliterated and two fea-
tures, one RA and one P are added in Hypo2 (Fig. 3). It 
screened 47 molecules out of 176 molecules from A set, 45 
molecules out of 191 molecules from M set, 5 molecules out 
of 58 molecules from LA set and 10 molecules out of 182 
molecules from IA set. After the modification of these two 
features, RA and P, Hypo2 screened high quantity of molecules 
from A set. Comparison of Hypo1 and Hypo2 revealed that 
hypo2 screened more number of molecules from A and M set 
and at the same time it screened less number of molecules 
from LA and IA set. Based on this comparison result, we 
speculate that RA and P features are essential for SIRT1 
activity. In order to find which group (RA or P) play a crucial 

role we further refined Hypo2. 
In the next modification, HBD and the H groups are included 

and obliterated RA group in Hypo3. The hypothesis screened 
5 molecules out of 176 molecules from A set and 1 molecule 
out of 191 molecules from M set but it failed to screen any 
molecules from both LA and IA sets (Fig. 3). Hypo3 screened 
only small number of molecules (3%) from A set but it could 
not screen any molecules from IA set. The comparison of 
Hypo3 with Hypo1 and Hypo2 showed that the percentage of 
the molecules screened from the A set was relatively very 
small. From this observation we suggest that the HBD group 
may not play any important role in SIRT1 activator. 

In the third modification, instead of P and RA features, Z 
and H features are included in Hypo4 (Fig. 3). This hypothesis 
screened 2 molecules from M set but it screened the minimum 
number of molecules (0.5%) from A, LA and IA sets. As a 
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Figure 4. Structure overlap of new hit compounds with the training 
set molecules. SIRT1720 with two hit compounds (SRT1720 in 
Black, A) and resveratrol with five hit compounds (Resveratrol in 
Black, B).
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Figure 5. Two new scaffolds with show similarity with training 
molecules. A) First scaffold shows similarity with SRT1720. B) 
Second scaffold shows similarity with resveratrol.

Table 3. Percentage comparison for the numbers of molecules screened 
from each hypothesis

Pharmaco-
phore

Percentage of number of molecules screened (%)

A set (176) M set (191) LA set (58) IA set (182)

Hypo1 11.42  8.90 10.34 3.86
Hypo2 26.70 23.56   8.62 5.49
Hypo3  2.84  0.52 0 0
Hypo4  0.56  1.04   1.72  0.54
Hypo5  0.56 0 0 0

A Set: Active Set, M set: Moderated set, LA set: Least Active set, IA set: 
InActive set.

final modification, in Hypo5 we added P and H features. This 
hypothesis screened only one molecule from A set and none 
from the rest of the sets (Fig. 3). By increasing the features in 
Hypo4 and 5, it screened only one molecule from the A set but 
the number of screened molecules were less when compared 
with Hypo2 screened molecules.

Validation of Best Hypothesis. Out of these five different 
hypotheses, Hypo1 and Hypo2 screened high percentage of 
molecules from A and M sets, at the same time it obtained very 
low percentage of molecules from IA and LA sets (Table 3). 
The rest of the hypotheses (Hypo3-5) screened very few 
molecules from A set, but the percentages of the molecules 
screened were very low. Hypo1 and Hypo2 screened high 
numbers of molecules from A and M sets.  However, when we 
compared these two hypotheses, Hypo2 screened double the 
amount of molecules from A and M sets and less amount from 
LA and IA sets than Hypo1. 

HBA feature was found in all the hypotheses but HBD 
feature was only present in Hypo1. In the absence of HBD 
feature, Hypo2 screened high number of molecules from A 
set. From this result we suggest the presence of HBD feature 
does not affect the activity of SIRT1. By comparing the 
different features in all the hypotheses we have observed that 
P and RA groups in Hypo2 appear to be very essential for the 
molecule to be an SIRT1 activator. Based on our study we 
propose that Hypo2 is the best hypothesis that consists of two 
HBA’s, one RA and one P (Fig. 3).

Virtual Screening. The best pharmacophore model, Hypo2 
was used to screen Maybridge database. The molecules that 
show good fit values were selected for further analysis. The 
best hypothesis (Hypo2) screened 57 compounds from the 
database and ADME (absorption, solubility and the Lipinski’s 
rule-of-five) properties were calculated for all the 57 com-
pounds using Discovery Studio V2.1 software. In general, a 
molecule will be well absorbed when they posses LogP less 
than 5, number of HBA less than 10, number of HBD less than 
5,  molecular weight less than 500 and number of the rotatable 
bond not exceeding 10.27 The number of rotatable bonds were 
considered to reduce the flexibility of the molecules. These 
are the important criteria to screen a good oral bioavailability 
drug. Finally seven molecules have satisfied all the above 
criteria. 

The final hit molecules were superimposed with the training 
set molecules for structural comparison (Fig. 4). Although 
they have different scaffolds when compared to the training 

sets, those scaffolds fulfilled all the critical chemical features 
presented in Hypo2. Based on the structural comparison, the 
final hit molecules were clustered into two groups. One group 
contains two molecules and this shows similarity with the 
SIRT1720 (Fig. 4A) and the other group contains five mole-
cules shows similarity with resveratrol (Fig. 4B). First scaffold 
(CD02704) is similar to SRT1720, where the center phenyl 
and imidazothiazole rings were replaced by isothiazole and 
phenyl present in SRT1720. In the second scaffold (HTS-
01501), the two benzene rings in resveratrol were replaced by 
benzimidazole.

In SRT1720, the carbonyl and the thio group of imada-
zolethiazole mapped the two HBA groups and the RA and P 
mapped quinoxaline and piperazine groups, respectively. 
CD02704 showed the two HBA’s were present in isoxazole 
and in linker nitrogen, P was present in pyrrolidine ring and 
the RA group was present in chlorobenzene. In HTS01501, 
the imidoformamide group was present in both sides of the 
molecule as hydroxyl group in resveratrol. The imidoform-
amide groups present in HTS01501 act as P as well as HBA 
features. The RA group was present in the benzimidazole. The 
HBA group maps the nitrogen group present in the imidazole. 

Two new scaffolds were identified as SIRT1 activators 
(Fig. 5). These two scaffolds satisfied all the critical features 
in Hypo2 and they may be useful to activate SIRT1, which can 
be the best strategy to treat the age related diseases. 
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Conclusions

A set of 3D ligand-based pharmacophore model was gene-
rated using HipHop module from CATALYST to discover the 
essential features of ligand, which are invaluable to examine 
the potential lead for SIRT1 activation.28 Due to the lack of 3D 
structural information of SIRT1, protein-based pharmacophore 
modeling strategy could not be used for this study. Till date, 
there is no template for the allosteric site of SIRT1 in Protein 
Data Bank (www.rcsb.org). It hindered the elucidation of 
homology modeling and structure based pharmacophore 
studies for SIRT1 activators. Therefore, to identify the critical 
features of the SIRT1 activators, ligand based pharmacophore 
model was used to develop the five different hypotheses. 
Among these five hypotheses Hypo2 (two HBA, one RA and 
one P) screened a good number of molecules from A set. All 
other hypotheses screened the molecules from A set, however 
the number of molecules screened was too small. On the other 
hand, most of the molecules from IA and LA sets were failed 
to pass this hypothesis. 

From this study, we propose that the four feature pharmaco-
phore, Hypo2 is a good hypothesis to screen SIRT1 activators. 
The best model, Hypo2 was used to screen the database in 
order to find out novel molecules. Totally 57 molecules were 
screened from the database and these molecules were further 
filtered using the ADME properties and Lipinski’s rule of 
five. Seven molecules were passed all the screening strategies.  
Among these seven molecules, two new scaffolds were iden-
tified, which satisfied all the chemical features in Hypo2 
hypothesis. These two scaffolds showed similarity in structure 
with resveratrol and SRT1720 molecules.

Hypo2 screened 27% of molecules from A set and 6% from 
IA set. Thus, we confirm that RA and P features are essential 
for the SIRT1 activators. This pharmacophore model provides 
key features and their relative distances, angles and geometric 
parameters that are important for a molecule to enhance 
SIRT1 activity. Glucose homeostasis and insulin sensitivity in 
the key metabolic tissues including liver, muscle and fat were 
improved by SIRT1 activators. Subjecting these molecules 
into in vitro studies may be an excellent lead for the activation 
of SIRT1. SIRT1 activation is one of the good approaches for 
treating age related diseases like type 2 diabetes. From this 
study, we concluded/suggest that the molecules having the 
above features will be a potent lead for the activating the 
SIRT1.
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