Expedient One-Pot Synthesis of γ-Hydroxybutenolides Starting from Baylis-Hillman Adducts: Lactonization, Isomerization, and Aerobic Oxidation of α-Methylene-γ-hydroxyester

Ko Hoon Kim, Hyun Seung Lee, Sung Hwan Kim, Ka Young Lee, Ji-Eun Lee,[†] and Jae Nyoung Kim^{*}

Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea *E-mail: kimjn@chonnam.ac.kr

[†]Department of Chemistry (BK21) and Central Instrument Facility, Gyeongsang National University, Jinju 660-701, Korea Received October 1, 2008, Accepted February 6, 2009

We developed an efficient three-step synthetic protocol of γ -hydroxybutenolides starting from the Baylis-Hillman adducts: (i) bromination, (ii) Barbier reaction and (iii) one-pot K₂CO₃-mediated synthesis of γ -hydroxybutenolides. In addition, we showed the synthetic applicability of butenolides including self-dimerization, conjugate addition reaction, and alkylations.

Key Words: Baylis-Hillman adducts, y-Hydroxybutenolides, Hydroxylation, Lactones

Introduction

5-Hydroxyfuran-2(5*H*)-ones (γ -hydroxybutenolides) are an important class of compounds because they often occur in natural products and exhibit a broad range of biological activities.¹⁻³ These compounds are considered as antimutagen, bactericides, antitumor agents, allergy inhibitors, phospholipase A2 inhibitors, etc.¹ Relevant examples include dysidiolide, manoalide, petrosaspongiolides and cacospongionolides (Figure 1).¹ γ -Hydroxybutenolides are also useful as synthetic intermediates in the preparation of physiologically active compounds. Because of the importance in chemical as well as pharmaceutical research much attention has been focused on the efficient and diverse synthesis of this class of compounds.¹⁻³

The most prevalent way to γ -hydroxybutenolide is the photooxidation of the furan moiety under basic conditions.^{1a-e,3} γ -Hydroxybutenolides can also be synthesized from the corresponding butenolides by the aerobic oxidation of butenolide-containing sugar^{2e} or 4-halobutenolides.^{2a}

Results and Discussion

Based on the reported results,^{2a,2e} we imagined that α -

Figure 1. Natural γ -hydroxybutenolides.

methylene- γ -butyrolactone such as **4a** can be transformed into γ -hydroxybutenolide **7a** *via* the sequential migration of double bond and concomitant aerobic oxidation process (Scheme 1). α -Methylene- γ -butyrolactones⁴ can be synthesized by lactonization (*p*-TsOH) of the corresponding α -methylene- γ -hydroxyester **3a** which can be prepared from the Baylis-Hillman adduct⁴⁻⁶ *via* the two-step bromination and indium-mediated Barbier reaction protocol.⁴

Cinnamyl bromide 1a was prepared by the reaction of Baylis-Hillman adduct and HBr as reported (95%).^{4,5} Indiummediated Barbier type reaction of 1a and benzaldehyde (2a) produced syn-3a as the sole compound as reported in 98%. Treatment of 3a with p-toluenesulfonic acid (10 mol%) in CH₂Cl₂ furnished α -methylene- γ -butyrolactone 4a in 95%.⁴ Double bond migration was carried out under the influence of Pd/C under hydrogen balloon atmosphere in ethanol to produce butenolide **5a** in 71%.⁷ Fully-reduced compound was not observed in this case (vide infra). As expected 5a was converted into its 5-hydroxy derivative 7a by aerobic oxidation process under the conditions of K_2CO_3 (30 mol%) in DMF in good yield (94%).^{2a,2e,8} Initially we exposed the reaction mixture under air stream, however, the reaction showed almost same reactivity without bubbling of air. In some cases, especially under the influence of DBU instead of K₂CO₃, we observed the formation of a trace amount of hydroperoxide **6a**,⁹ which was changed to **7a** by treatment with PPh₃ quantitatively (vide infra).

The reaction of **4a** under the same conditions (DMF, K_2CO_3 , 90 °C) also produced **7a** in 67% yield, presumably *via* the simultaneous double bond isomerization and aerobic oxidation. More preferably, the reaction of α -methylene- γ -hydroxyester **3a** under the same conditions (DMF, K_2CO_3 , 90 °C) gave **7a** in good yield (69%) also. Overall yields of compound **7a** were all similar: overall 63% yield for the three-step process (from **3a** *via* **4a** and **5a**); 64% for the two-step sequence (from **3a** *via* **4a**); 69% for direct synthesis from **3a**. Based on the simplicity and the yield of product **7a**, direct synthesis from **3a** was found as the best process. However, we observed some unknown compounds during the

DBU (0.3 equiv), CH₃CN, rt, 5 h: **6a** (1%), **7a** (5%), **8a** (62%), **9a** (12%) DBU (1.2 equiv), CH₃CN, rt, 1 h: **6a** (14%), **7a** (13%), **8a** (43%), **9a** (8%)

Scheme 1. Optimization of conditions for the conversion of 3a to 7a.

synthesis of **7a** from **3a** or **4a**. In order to identify the side products we examined the reactions carefully. When we run the reaction of **4a** in the presence of DBU (30 mol%) in CH₃CN at room temperature, we observed the formation of compounds **6a** (1%), **7a** (5%) and diastereomeric dimers, **8a** (62%) and **9a** (12%).¹⁰ With excess amounts of DBU (1.2 equiv) the ratio was changed to increase the amounts of **6a** (14%) and **7a** (13%). Hydroperoxide **6a** might be the plausible intermediate for the formation of **7a** as mentioned above. Dimeric compounds **8a** and **9a** were produced (51-74%) by conjugate addition of the anion of **4a** to the *exo*-methylene moiety of **4a**. The ratio of major and minor was 84:16 in both cases. The structures of compound **7a** and **8a** were assigned unequivocally by their X-ray crystal structures (Figures 2 and 3).^{11,12}

Encouraged by the results, we prepared some analogous α methylene- γ -hydroxyesters 3b-i by following the same procedure of **3a**, and examined the one-pot synthesis of γ hydroxybutenolides and the results are summarized in Table 1. We selected three Baylis-Hillman adducts which were derived from benzaldehyde ($R_1 = Ph$), 4-chlorobenzaldehyde $(R_1 = 4 - ClC_6H_4)$ and hexanal $(R_1 = C_5H_{11})$. In the next Barbier reaction, we examined six aldehydes, namely benzaldehyde $(R_2 = Ph)$, 2-bromobenzaldehyde $(R_2 = 2-BrC_6H_4)$, 4-chlorobenzaldehyde ($R_2 = 4$ -ClC₆H₄), 4-methoxybenzaldehyde (R_2 = 4-MeOC₆H₄), 2-naphthylaldehyde (R_2 = 2-naphthyl) and hexanal ($R_2 = C_5 H_{11}$). In all cases except entries 8 and 9, γ hydroxybutenolides 7a-g were prepared successfully in 53-69% yields. Aryl substituents R1 and R2 might facilitate both double-bond isomerization and aerobic oxidation process. When R_1 or R_2 is pentyl (entries 8 and 9), α -methylene- γ butyrolactones 4h and 4i were isolated in high yields (94-95%) instead of desired γ -hydroxybutenolides 7h and 7i.

Figure 2. ORTEP drawing of compound 7a.

Figure 3. ORTEP drawing of compound 8a.

Table	1.	Synthesis	of	γ-hyc	lroxy	buteno	lides
-------	----	-----------	----	-------	-------	--------	-------

8

9

R ₁ EWG Br 1 (<i>E</i>)	R ₂ -CHO (2 , 1.5 equiv) In (1.2 equiv) aq THF, rt, 1 h	$\begin{array}{c} R_2 \\ R_1 \\ \hline \\ 3 (syn) \end{array} \xrightarrow{\text{OH}} \frac{K_2 \text{CO}_3 (0)}{\text{DMF}, 90} \end{array}$	$\begin{array}{c} \text{A.3 equiv}) \\ \stackrel{\text{OC, 1-6 h}}{\longrightarrow} \\ R_1 \\ \hline \\ 7 \end{array} $
a: R ₁ = Ph, R b: R ₁ = Ph, R c: R ₁ = 4-ClC d: R ₁ = Ph, R e: R ₁ = Ph, R	$_{2}^{2} = Ph, EWG = COOMe$ $_{2}^{2} = Ph, EWG = COOEt$ $_{6}^{1}H_{4}, R_{2} = Ph, EWG = COO$ $_{2}^{2} = 2 \cdot BrC_{6}H_{4}, EWG = COO$ $_{2}^{2} = 4 \cdot ClC_{6}H_{4}, EWG = COO$	$\begin{array}{ll} f: \ R_1 = Ph, \ R_2 = 4-h\\ g: \ R_1 = Ph, \ R_2 = 2-h\\ Me & h: \ R_1 = Ph, \ R_2 = C_2\\ Me & i: \ R_1 = C_5 H_{11}, \ R_2 = Me \end{array}$	$MeOC_6H_4$, EWG = COOMe naphthyl, EWG = COOMe H_{11} , EWG = COOMe Ph, EWG = COOEt
Entry	3 (%)	Time (h)	7 (%)
1	3a (98)	6	7a (69)
2	3b (97)	3	7a (62)
3	3c (92)	3	7c (66)
4	3d (86)	2	7d (62)
5	3e (87)	2	7e (65)
6	3f (88)	2	7f (64)
7	3 g (90)	3	7g (53)

^aCompounds **4h** and **4i** were isolated in high yields instead of **7h** and **7i**. ^bCompounds **7h** and **7i** were synthesized from **4h** and **4i** (Scheme 2).

1

1

3h (69)

3i (84)

4h $(95)^{a,b}$

4i (94)^{*a,b*}

When we subjected the reaction mixture of **3h** for a long time (15 h), as an example, we could isolate 7h in low yield (22%), together with dimeric compounds 8h (28%) and 9h (7%). The reactivity of 3i was similar and we obtained 7i (25%), 8i (28%) and 9i (2%) under the same conditions (Scheme 2). Thus, we applied three-step conditions (vide supra) to **3h** and **3i** as in Scheme 2, namely lactonization, isomerization and aerobic oxidation. During double-bond isomerization process of 4h and 4i, fully reduced side products were formed a little and contaminated in about 20% (based on ¹H NMR) thus make the separation of pure **5h** and 5i very difficult. Thus we carried out the isomerization under small size H₂ balloon and stopped the reaction after 5 h (starting material was remained in appreciable amounts). By using this protocol pure 5h and 5i were obtained in 60 and 75%, respectively. The next hydroxylation was carried out with DBU in CH₃CN. Compound 7i was obtained at room temperature in high yield (93%), while the oxidation of compound **5h** to **7h** required elevated temperature (50 °C) and long reaction time (24 h). By using the three-step protocol,

Table 2. Michael addition	on reaction of b	utenolide 5a
---------------------------	------------------	--------------

Scheme 2. Synthesis of 7h and 7i from 3h and 3i via three-step method.

compounds **7h** and **7i** were synthesized elegantly from **3h** and **3i** in 49-65% overall yields.

As we observed in the case of 4a (vide supra, Scheme 1), the formation of dimeric compounds 8a and 9a can be regarded as the results of competition between air oxidation to 7a and conjugate addition reaction to 8a and 9a.^{10,13} Air oxidation was the principal pathway with K₂CO₃ at elevated temperature (90 °C) while conjugate addition was the major reaction with DBU at room temperature. Thus, for the next examination, we tried conjugate additions of 5a with some external Michael acceptors, methyl acrylate (10a), acrylonitrile (10b), phenyl vinyl sulfone (10c) and 2-cyclohexen-1-one (10d), and the results are summarized in Table 2. As a comparison experiment, the reaction of 5a and 10a was carried out under aerobic conditions (entry 1), and we observed the formation of 7a and 11a. In order to reduce the formation of aerobic oxidation product 7a the next reactions were carried out under the strictly controlled nitrogen atmosphere (entries 2-5). The corresponding conjugate addition products 11a-d were obtained in good to excellent yields (66-96%) and

	5a	$\begin{array}{c} \text{EWG} & \text{O} \\ \text{Ph} & \text{O} \\ \text{Ph} & \text{O} \\ \text{Ph} & \text{O} \\ \text{Ph} & \text{O} \\ \text{11b: EWG = COOMe} \\ \text{11b: EWG = CN} \\ \text{11c: EWG = SO_2Ph} \end{array}$	Ph O 11d
Entry	Michael aceptor (10)	Conditions ^a	Products (%)
1	methyl acrylate (10a)	DBU (0.3 equiv), 10a (3.0 equiv), CH ₃ CN, rt, 1 h	n 7a (35), 11a (42)
2	10a	DBU (0.3 equiv), 10a (3.0 equiv), CH ₃ CN, N ₂ , rt	, 1 h 11a (90)
3	acrylonitrile (10b)	DBU (0.3 equiv), 10b (3.0 equiv), CH ₃ CN, N ₂ , rt	, 1 h 11b (70)
4	phenyl vinyl sulfone (10c)	DBU (0.3 equiv), 10c (3.0 equiv), CH ₃ CN, N ₂ , rt	, 1 h 11c (96)
5	2-cyclohexen-1-one (10d)	DBU (0.3 equiv), 10d (3.0 equiv), CH ₃ CN, N ₂ , rt	a, 1 h 11d (66)

^aEntry 1 was run under aerobic conditions and entries 2-5 under N₂ atmosphere.

Ko Hoon Kim et al.

Table 3. Alkylation of butenolide 5a

^{*a*}No reaction under DBU conditions. ^{*b*} R_f values of **13c** and **15c** were very similar and the yields of **13c/15c** were calculated based on ¹H NMR spectrum of the mixture.

we did not observe the formation of **7a** nor the dimeric compounds **8a** and **9a** in these cases.

Alkylation reaction of 5a with allyl bromide (12a), benzyl bromide (12b) and iodomethane (12c) was also examined.¹⁴ Due to the possible resonance structures of the anion of 5a, alkylation occurred at either α - and γ -positions (Table 3).¹⁵ The reaction of 5a and allyl bromide under DBU conditions (entry 1) produced γ -adduct 13a (14%) and α -adduct 14a (67%). The trend was same in the reaction of benzyl bromide (entry 2), and α -adduct 14b (70%) was the major product. The reaction of 5a and iodomethane with DBU failed completely presumably due to the salt formation between CH₃I and DBU.¹⁶ Thus we carried out the reaction under the influence of K₂CO₃ and obtained 13c (5%), 14c (52%) and 15c (25%) as in entry 3 (vide infra). In all cases α -adduct was the major product irrespective of the kinds of alkyl halide and base. When we run the reaction with K_2CO_3 (entry 3) complete removal of molecular oxygen was very difficult due to the presence of volatile CH₃I. Thus appreciable amounts of γ hydroxybutenolide 7a was formed and reacted with CH₃I to produce finally γ -ketoester **15c**. Authentic compound **15c** was prepared from the reaction of 7a and CH₃I (3.0 equiv) in the presence of K₂CO₃ (1.2 equiv) in DMF (rt, 2 h) in 93% yield.

In summary, we developed an efficient three-step synthetic protocol of γ -hydroxybutenolides starting from the Baylis-Hillman adducts: (i) bromination, (ii) Barbier reaction and (iii) one-pot K₂CO₃-mediated synthesis of γ -hydroxybutenolides. In addition, we showed the synthetic applicability of butenolides including the self-dimerization, conjugate addition reaction, and alkylations.

Experimental

General procedure. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded in CDCl₃. The signal positions are reported in parts per million relative to TMS (δ scale) used as an internal standard. IR spectra are reported in cm⁻¹. Mass spectra were obtained from the Korea Basic Science Institute (Gwangju branch). Melting points are uncorrected. The elemental analyses were carried out at Korea Research Institute of Chemical Technology, Daejeon, Korea. All reagents were purchased from commercial sources and used without further treatment. The separations were carried out by flash column chromatography over silica gel (230-400 mesh ASTM).

Organic extracts were dried over anhydrous MgSO₄ and the solvents were evaporated on a rotary evaporator under water aspirator pressure.

Typical procedure for the synthesis of 3a.^{4e} To a stirred solution of **1a** (765 mg, 3.0 mmol) and benzaldehyde (**2a**, 477 mg, 4.5 mmol) in aqueous THF (1:1, 5 mL) was added indium powder (414 mg, 3.6 mmol) and stirred at room temperature for 1 h. After extractive workup and column chromatographic purification process (hexanes/EtOAc, 8:1) *syn*-**3a** was isolated as colorless oil, 829 mg (98%). Other compounds **3b-i** were prepared similarly and the spectroscopic data of **3a-i** are as follows.

Compound $3a^{4c}$: Yield 98%; colorless oil; IR (film) 3503, 1717, 1249, 1144 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.30 (d, J= 3.6 Hz, 1H), 3.45 (s, 3H), 4.26 (dd, J= 8.1 and 0.9 Hz, 1H), 5.18 (dd, J= 8.1 and 3.6 Hz, 1H), 5.74 (d, J= 0.9 Hz, 1H), 6.18 (d, J= 0.9 Hz, 1H), 7.16-7.30 (m, 10H); ¹³C NMR (CDCl₃, 75 MHz) δ 51.63, 54.03, 75.41, 126.69, 126.80, 126.90, 127.48, 127.96, 128.23, 129.06, 138.56, 140.93, 142.03, 166.78; ESIMS *m*/*z* 283 (M⁺+1). Anal. Calcd for C₁₈H₁₈O₃: C, 76.57; H, 6.43. Found: C, 76.45; H, 6.67.

Compound **3b**⁴: Yield 97%; colorless oil; IR (film) 3498, 1714, 1454, 1250, 1144, 1028 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.13 (t, *J* = 7.2 Hz, 3H), 2.11 (br s, 1H), 3.94-4.05 (m, 2H), 4.30 (dd, *J* = 7.8 and 0.9 Hz, 1H), 5.26 (d, *J* = 7.8 Hz, 1H), 5.78 (d, *J* = 0.9 Hz, 1H), 6.23 (d, *J* = 0.9 Hz, 1H), 7.20-7.33 (m, 10H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.92, 54.23, 60.73, 75.67, 126.53, 126.94, 127.10, 127.69, 128.16, 128.43, 129.18, 138.68, 141.29, 142.04, 166.45; ESIMS *m/z* 297 (M⁺+1).

Compound **3c**: Yield 92%; colorless oil; IR (film) 3489, 1714, 1492, 1250, 1144 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.15 (br s, 1H), 3.57 (s, 3H), 4.23 (d, *J* = 4.2 Hz, 1H), 5.23 (d, *J* = 4.2 Hz, 1H), 5.81 (t, *J* = 0.9 Hz, 1H), 6.24 (d, *J* = 0.9 Hz, 1H), 7.19-7.31 (m, 9H); ¹³C NMR (CDCl₃, 75 MHz) δ 51.87, 53.58, 75.31, 126.69, 127.09, 127.78, 128.21, 128.36, 130.66, 132.80, 137.04, 140.78, 142.03, 166.80; ESIMS *m*/z 317 (M⁺+1). Anal. Calcd for C₁₈H₁₇ClO₃: C, 68.25; H, 5.41. Found: C, 68.49; H, 5.77.

Compound **3d**: Yield 86%; white solid, mp 108-110 °C; IR (KBr) 3492, 1716, 1145 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.26 (d, J = 4.5 Hz, 1H), 3.61 (s, 3H), 4.45 (d, J = 5.7 Hz, 1H), 5.61 (dd, J = 5.7 and 4.5 Hz, 1H), 6.08 (s, 1H), 6.37 (s, 1H), 7.08-7.31 (m, 8H), 7.52-7.55 (m, 1H); ¹³C NMR (CDCl₃, 75

MHz) δ 51.77, 51.99, 73.95, 122.92, 126.88, 127.28, 127.29, 128.33, 128.56, 129.12, 129.49, 132.69, 137.40, 140.68, 140.99, 167.12; ESIMS *m*/*z* 361 (M⁺+1). Anal. Calcd for C₁₈H₁₇BrO₃: C, 59.85; H, 4.74. Found: C, 59.48; H, 4.83.

Compound $3e^{4d}$: Yield 87%; colorless oil; IR (film) 3486, 1716, 1493, 1143 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.30 (d, J = 3.6 Hz, 1H), 3.56 (s, 3H), 4.21 (dd, J = 7.8 and 0.9 Hz, 1H), 5.22 (dd, J = 7.8 and 3.6 Hz, 1H), 5.77 (t, J = 0.9 Hz, 1H), 6.22 (d, J = 0.9 Hz, 1H), 7.18-7.33 (m, 9H); ¹³C NMR (CDCl₃, 75 MHz) δ 51.83, 54.39, 74.83, 127.00, 127.20, 128.21, 128.25, 128.46, 129.11, 133.23, 138.17, 140.61, 140.78, 166.82; ESIMS *m/z* 317 (M⁺+1).

Compound $3f^{\text{Ad}}$: Yield 88%; colorless oil; IR (film) 3504, 1718, 1514, 1250 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.03 (br s, 1H), 3.57 (s, 3H), 3.77 (s, 3H), 4.28 (d, J = 8.1 Hz, 1H), 5.21 (d, J = 8.1 Hz, 1H), 5.77 (s, 1H), 6.21 (s, 1H), 6.80-6.85 (m, 2H), 7.20-7.36 (m, 7H); ¹³C NMR (CDCl₃, 75 MHz) δ 51.82, 54.26, 55.16, 75.33, 113.57, 126.67, 127.13, 128.16, 128.49, 129.10, 134.11, 138.88, 141.09, 159.08, 166.91; ESIMS *m*/*z* 313 (M⁺+1).

Compound **3g**: Yield 90%; colorless oil; IR (film) 3463, 2925, 2854, 1716, 1464, 1259 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.27 (br s, 1H), 3.46 (s, 3H), 4.39 (d, *J* = 7.8 Hz, 1H), 5.38 (d, *J* = 7.8 Hz, 1H), 5.80 (s, 1H), 6.19 (s, 1H), 7.22-7.34 (m, 5H), 7.40-7.45 (m, 3H), 7.66 (s, 1H), 7.30-7.79 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 51.77, 54.22, 75.76, 124.65, 125.85, 125.97, 126.15, 126.90, 127.19, 127.57, 127.95, 128.03, 128.50, 129.19, 132.98, 133.00, 138.48, 139.45, 140.94, 166.89; ESIMS *m*/*z* 333 (M⁺+1). Anal. Calcd for C₂₂H₂₀O₃: C, 79.50; H, 6.06. Found: C, 79.43; H, 6.43.

Compound **3h**^{4c}: Yield 69%; colorless oil; IR (film) 3528, 2953, 2931, 2857, 1721, 1252, 1146 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.88 (t, *J* = 8.0 Hz, 3H), 1.24-1.32 (m, 4H), 1.36-1.39 (m, 1H), 1.45 (d, *J* = 5.0 Hz, 1H), 1.50-1.56 (m, 2H), 3.68 (s, 3H), 3.91 (d, *J* = 6.5 Hz, 1H), 4.13-4.14 (m, 1H), 5.88 (s, 1H), 6.36 (s, 1H), 7.22-7.26 (m, 1H), 7.29-7.33 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.99, 22.58, 25.57, 31.71, 35.35, 51.94, 52.46, 72.74, 126.04, 127.03, 128.50, 129.27, 138.86, 141.71, 167.25; ESIMS *m/z* 277 (M⁺+1).

Compound **3i**: Yield 84%; colorless oil; IR (film) 3461, 2956, 2931, 2859, 1713, 1151 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.82 (t, *J* = 6.9 Hz, 3H), 1.05-1.26 (m, 6H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.50-1.66 (m, 2H), 2.83 (d, *J* = 3.0 Hz, 1H), 2.92-2.99 (m, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 4.84 (dd, *J* = 5.1 and 3.0 Hz, 1H), 5.42 (dd, *J* = 1.2 and 0.9 Hz, 1H), 6.22 (d, *J* = 1.2 Hz, 1H), 7.19-7.33 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.97, 14.12, 22.45, 27.03, 27.34, 31.75, 49.37, 60.94, 76.44, 126.47, 126.76, 127.15, 127.91, 140.89, 142.65, 168.03; ESIMS *m*/*z* 291 (M⁺+1). Anal. Calcd for C₁₈H₂₆O₃: C, 74.45; H, 9.02. Found: C, 74.77; H, 9.34.

Typical procedure for the synthesis of compound 7a. A mixture of 3a (564 mg, 2.0 mmol) and K₂CO₃ (83 mg, 0.6 mmol) in DMF (1.5 mL) was heated to 90 °C for 6 h. After extractive workup and column chromatographic purification process (hexanes/EtOAc, 7:1) 7a was isolated as colorless oil, 367 mg (69%). Other γ -hydroxybutenolides 7c-g and butyrolactones 4h and 4i were prepared similarly and the spectroscopic data of 7a, 7c-g, 4h and 4i are as follows.

Compound **7a**^{2b}: Yield 69%; pale yellow solid, mp 169-171 °C; IR (KBr) 3253, 2924, 1734, 1448, 1340, 1238, 1138 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.05 (s, 3H), 4.23 (br s, 1H), 7.29-7.33 (m, 8H), 7.40-7.43 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) 10.04, 106.05, 125.37, 125.83, 128.47 (2C), 128.61, 129.28, 129.60, 130.53, 137.14, 158.62, 172.58; ESIMS *m/z* 267 (M⁺+1). Anal. Calcd for C₁₇H₁₄O₃: C, 76.68; H, 5.30. Found: C, 76.46; H, 5.12.

Compound **7c**: Yield 66%; pale yellow solid, mp 152-153 °C; IR (KBr) 3357, 1741, cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.00 (s, 3H), 5.55 (br s, 1H), 7.25-7.33 (m, 7H), 7.36-7.41 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.96, 106.52, 125.53, 125.76, 128.47, 128.73, 128.94, 129.27, 129.97, 135.67, 136.70, 157.76, 173.27; ESIMS *m*/*z* 301 (M⁺+1). Anal. Calcd for C₁₇H₁₃ClO₃: C, 67.89; H, 4.36. Found: C, 68.04; H, 4.34.

Compound **7d**: Yield 62%; pale yellow solid, mp 166-168 °C; IR (KBr) 3329, 2924, 1745 cm⁻¹; ¹H NMR (DMSO-*d*₆, 300 MHz) δ 2.02 (s, 3H), 7.21-7.26 (m, 1H), 7.32-7.44 (m, 6H), 7.54 (dd, *J* = 7.8 and 1.8 Hz, 1H), 8.04 (dd, *J* = 7.8 and 1.8 Hz, 1H), 8.04 (dd, *J* = 7.8 and 1.8 Hz, 1H), 8.58 (br s, 1H); ¹³C NMR (DMSO-d₆, 75 MHz) δ 10.02, 104.57, 120.11, 127.11, 127.66, 128.04, 128.52, 129.46, 130.27, 130.61, 131.05, 134.73, 135.38, 155.17, 172.59; ESIMS *m/z* 345 (M⁺+1). Anal. Calcd for C₁₇H₁₃BrO₃: C, 59.15; H, 3.80. Found: C, 59.46; H, 3.93.

Compound **7e**: Yield 65%; pale yellow solid, mp 129-131 °C; IR (KBr) 3315, 1743 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.01 (s, 3H), 5.55 (br s, 1H), 7.20-7.25 (m, 2H), 7.31-7.35 (m, 7H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.97, 106.18, 125.26, 127.40, 128.50, 128.55, 128.57, 129.71, 130.29, 135.12, 135.62, 158.76, 173.34; ESIMS *m*/*z* 301 (M⁺+1). Anal. Calcd for C₁₇H₁₃ClO₃: C, 67.89; H, 4.36. Found: C, 67.88; H, 4.73.

Compound **7f**: Yield 64%; pale yellow oil; IR (film) 3350, 1736, 1514, 1253, cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.03 (s, 3H), 3.77 (s, 3H), 4.36 (br s, 1H), 6.79-6.82 (m, 2H), 7.31-7.34 (m, 7H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.99, 55.23, 106.23, 113.77, 125.08, 127.29, 128.44, 128.63, 129.19, 129.53, 130.68, 158.70, 160.16, 172.73; ESIMS *m/z* 297 (M⁺+1). Anal. Calcd for C₁₈H₁₆O₄: C, 72.96; H, 5.44. Found: C, 73.12; H, 5.67.

Compound **7g**: Yield 53%; pale yellow solid, mp 157-159 °C; IR (KBr) 3356, 1741 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.08 (s, 3H), 4.60 (br s, 1H), 7.25-7.39 (m, 6H), 7.44-7.52 (m, 2H), 7.74-7.80 (m, 3H), 8.02 (d, *J* = 1.5 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 10.10, 106.29, 123.05, 125.52, 125.60, 126.42, 126.86, 127.57, 128.42, 128.47, 128.54, 128.61, 129.62, 130.50, 132.78, 133.43, 134.41, 158.67, 172.81; ESIMS *m*/*z* 317 (M⁺+1). Anal. Calcd for C₂₁H₁₆O₃: C, 79.73; H, 5.10. Found: C, 79.46; H, 5.13.

Compound $4h^{4c}$: Yield 95%; colorless oil; IR (film) 2928, 1751 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.80 (t, J = 7.0 Hz, 3H), 1.06-1.31 (m, 7H), 1.42-1.46 (m, 1H), 4.35 (dt, J = 8.0 and 2.5 Hz, 1H), 4.86-4.73 (m, 1H), 5.60 (d, J = 3.0 Hz, 1H), 6.44 (d, J = 3.0 Hz, 1H), 7.14-7.15 (m, 2H), 7.28-7.36 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.85, 22.36, 25.36, 31.32, 32.39, 49.48, 81.76, 124.07, 127.65, 128.67, 129.03, 137.58, 139.13, 170.44; ESIMS *m/z* 245 (M⁺+1).

Compound **4i**: Yield 94%; colorless oil; IR (film) 2955, 2931, 2859, 1769, 1147 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ

0.78 (t, J = 7.0 Hz, 3H), 0.95-1.00 (m, 1H), 1.06-1.28 (m, 7H), 3.21-3.25 (m, 1H), 5.59 (d, J = 7.5 Hz, 1H), 5.60 (d, J = 2.5 Hz, 1H), 6.32 (d, J = 2.5 Hz, 1H), 7.21-7.22 (m, 2H), 7.32-7.37 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 13.76, 22.14, 25.77, 28.70, 31.30, 44.43, 82.06, 121.70, 126.16, 128.28, 128.32, 135.91, 139.15, 170.51; ESIMS *m*/*z* 245 (M⁺+1). Anal. Calcd for C₁₆H₂₀O₂: C, 78.65; H, 8.25. Found: C, 78.54; H, 8.06.

Compounds 4a, 5a and 6a were synthesized as in Scheme 1, and the spectroscopic data of these compounds are as follows.

Compound $4a^{4c,e}$: Yield 95%; ¹H NMR (CDCl₃, 300 MHz) δ 4.67 (dt, J = 8.4 and 3.0 Hz, 1H), 5.78 (d, J = 3.0 Hz, 1H), 5.84 (d, J = 8.4 Hz, 1H), 6.52 (d, J = 3.0 Hz, 1H), 6.73-6.77 (m, 2H), 6.82-6.86 (m, 2H), 7.03-7.13 (m, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 51.91, 82.53, 124.82, 125.82, 127.34, 127.86, 127.91, 128.13, 129.23, 136.10, 136.28, 137.91, 170.71; ESIMS m/z 251 (M⁺+1).

Compound $5a^{7b-d}$: Yield 71%; colorless oil; ¹H NMR (CDCl₃, 300 MHz) δ 2.16 (d, J= 2.1 Hz, 3H), 6.18 (dd, J= 3.6 and 1.5 Hz, 1H), 7.20-7.31 (m, 7H), 7.32-7.38 (m, 3H); ESIMS m/z 251 (M⁺+1).

Compound **6a**: Yield 14%; white solid, mp 155-157 °C; IR (film) 3246, 2923, 1751 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.04 (s, 3H), 7.28-7.33 (m, 4H), 7.40 (s, 6H), 8.95 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.90, 111.88, 126.33, 127.43, 128.40, 128.63, 128.66, 129.69, 129.86, 130.43, 133.28, 156.29, 171.76; ESIMS *m/z* 283 (M⁺+1). Anal. Calcd for C₁₇H₁₄O₄: C, 72.33; H, 5.00. Found: C, 72.48; H, 4.84.

Typical procedure for the synthesis of compound 5h. A mixture of **4h** (244 mg, 1.0 mmol) and Pd/C (15 mg) in CH_2Cl_2 (3 mL) was stirred to room temperature for 5 h under hydrogen balloon. After removal of solvent and column chromatographic purification process ($CH_2Cl_2/CHCl_3$, 1:1) **5h** was isolated as colorless oil, 147 mg (60%). When we used different solvent system for the purification of **5h** the separation from the remaining **4h** was very difficult. Compound **5i** was prepared similarly and the spectroscopic data of **5h** and **5i** are as follows.

Compound **5h**: Yield 60%; colorless oil; IR (film) 2928, 1751 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.83 (t, *J* = 7.0 Hz, 3H), 1.17-1.25 (m, 4H), 1.35-1.46 (m, 3H), 1.77-1.83 (m, 1H), 2.04 (s, 3H), 5.32-5.34 (m, 1H), 7.33-7.35 (m, 2H), 7.43-7.51 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.95, 13.88, 22.36, 24.15, 31.34, 32.93, 81.82, 123.67, 127.73, 129.01, 129.68, 131.71, 159.50, 174.62; ESIMS *m*/*z* 245 (M⁺+1). Anal. Calcd for C₁₆H₂₀O₂: C, 78.65; H, 8.25. Found: C, 78.37; H, 8.02.

Compound **5i**: Yield 75%; colorless oil; IR (film) 2930, 1757 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.85 (t, *J* = 6.9 Hz, 3H), 1.15-1.47 (m, 6H), 1.91 (s, 3H), 1.95-2.04 (m, 1H), 2.28-2.38 (m, 1H), 5.68 (d, *J* = 1.5 Hz, 1H), 7.17-7.23 (m, 2H), 7.34-7.42 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.02, 14.08, 22.46, 26.86, 27.48, 31.75, 84.37, 123.25, 127.20, 129.16, 129.50, 135.30, 163.52, 175.25; ESIMS *m/z* 245 (M⁺+1). Anal. Calcd for C₁₆H₂₀O₂: C, 78.65; H, 8.25. Found: C, 78.96; H, 8.54.

Typical procedure for the synthesis of compound 7h. A mixture of 5h (122 mg, 0.5 mmol) and DBU (76 mg, 0.5

mmol) in CH₃CN (1 mL) was heated to 50 $^{\circ}$ C for 24 h. After aqueous workup and column chromatographic purification process (hexanes/EtOAc, 10:1) **7h** was isolated as colorless oil, 111 mg (85%). Compound **7i** was prepared similarly and the spectroscopic data of **7h** and **7i** are as follows.

Compound **7h**: Yield 85%; colorless oil; IR (film) 3359, 2925, 1739 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.79 (t, *J* = 6.6 Hz, 3H), 1.16-1.23 (m, 4H), 1.28-1.35 (m, 2H), 1.73-1.83 (m, 1H), 1.93-1.99 (m, 1H), 2.04 (s, 3H), 3.48 (br s, 1H), 7.43-7.50 (m, 3H), 7.59-7.64 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 10.01, 13.79, 22.27, 22.53, 31.31, 36.94, 107.41, 125.86, 128.44, 128.76, 129.80, 130.86, 156.96, 172.01; ESIMS *m/z* 261 (M⁺+1). Anal. Calcd for C₁₆H₂₀O₃: C, 73.82; H, 7.74. Found: C, 73.59; H, 7.57.

Compound **7i**: Yield 93%; colorless oil; IR (film) 3367, 2956, 2930, 2862, 1742, 1451 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 0.79 (t, *J* = 7.0 Hz, 3H), 1.12-1.22 (m, 5H), 1.26-1.36 (m, 1H), 1.84 (s, 3H), 2.13-2.22 (m, 2H), 4.40 (br s, 1H), 7.35-7.38 (m, 3H), 7.43-7.46 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 8.60, 13.77, 22.07, 25.79, 26.98, 31.73, 106.28, 124.12, 125.64, 128.49, 129.19, 136.98, 163.27, 173.66; ESIMS *m/z* 261 (M⁺+1). Anal. Calcd for C₁₆H₂₀O₃: C, 73.82; H, 7.74. Found: C, 73.67; H, 7.92.

Typical procedure for the synthesis of compound 8a and 9a. A mixture of 4a (250 mg, 1.0 mmol) and DBU (46 mg, 0.3 mmol) in CH₃CN (3 mL) was stirred at room temperature for 5 h. After aqueous workup and column chromatographic purification process (hexanes/ether, 5:1) 8a (156 mg, 62%) and 9a (31 mg, 12%) were isolated as colorless oils together with small amounts of 6a and 7a. Compounds 8h, 8i, 9h and 9i were prepared similarly under the conditions of K₂CO₃/DMF at 90 °C from 3h and 3i (Scheme 2), and the spectroscopic data of 8a, 9a, 8h, 9h, 8i and 9i are as follows.

Compound **8a**: Yield 62%; white solid, mp 174-176 °C; IR (KBr) 1759 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.93 (s, 3H), 2.33 (dd, *J* = 15.0 and 9.6 Hz, 1H), 2.99 (dd, *J* = 15.0 and 1.5 Hz, 1H), 3.22 (ddd, *J* = 9.6, 7.5 and 1.5 Hz, 1H), 3.84 (dd, *J* = 7.5 and 5.1 Hz, 1H), 5.81 (d, *J* = 5.1 Hz, 1H), 6.78-6.80 (m, 2H), 6.86-6.90 (m, 2H), 6.94-7.25 (m, 13H), 7.30-7.40 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.75, 31.55, 43.10, 52.64, 83.41, 90.27, 125.24, 125.34, 125.77, 127.24, 127.38, 127.83, 127.92, 128.18, 128.32, 128.39, 128.71 (2C), 129.39, 131.01, 133.84, 135.34, 137.52, 163.79, 173.46, 177.75; ESIMS *m/z* 501 (M⁺+1). Anal. Calcd for C₃₄H₂₈O₄: C, 81.58; H, 5.64. Found: C, 81.26; H, 5.48.

Compound **9a**: Yield 12%; white solid, mp 209-211 °C; IR (KBr) 1759 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.74 (s, 3H), 2.31 (dd, *J* = 14.7 and 9.0 Hz, 1H), 3.01-3.14 (m, 2H), 4.10 (t, *J* = 7.2 Hz, 1H), 5.77 (d, *J* = 7.8 Hz, 1H), 6.53-6.55 (m, 2H), 6.70-6.73 (m, 2H), 6.77-6.80 (m, 2H), 6.92-6.99 (m, 5H), 7.05-7.07 (m, 3H), 7.16-7.20 (m, 3H), 7.32-7.38 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.44, 37.52, 42.61, 52.09, 82.90, 89.72, 124.34, 125.54, 125.81, 126.81, 127.58, 127.79, 127.82, 128.08, 128.32, 128.37, 128.49, 128.56, 129.23, 131.09, 135.28, 135.75, 136.20, 165.49, 173.02, 178.99; ESIMS *m/z* 501 (M⁺+1). Anal. Calcd for C₃₄H₂₈O₄: C, 81.58; H, 5.64. Found: C, 81.23; H, 5.92.

Compound 8h: Yield 28%; white solid, mp 94-96 °C; IR

(KBr) 2929, 1751 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.73-0.82 (m, 6H), 0.98-1.29 (m, 12H), 1.37-1.52 (m, 4H), 1.79 (dd, *J* = 15.6 and 9.9 Hz, 1H), 1.93 (s, 3H), 2.43 (d, *J* = 15.6 Hz, 1H), 2.74-2.80 (m, 1H), 3.59 (dd, *J* = 7.8 and 2.1 Hz, 1H), 4.56-4.62 (m, 1H), 7.08-7.14 (m, 2H), 7.22-7.36 (m, 5H), 7.39-7.49 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.89, 13.80, 13.81, 22.23, 22.27, 22.29, 25.29, 30.68, 30.93, 31.33, 31.38, 37.15, 42.68, 50.64, 83.53, 91.17, 127.42, 127.58, 127.63, 128.60, 129.11 (2C), 129.49, 131.42, 134.78, 162.06, 173.38, 178.16; ESIMS *m/z* 489 (M⁺+1). Anal. Calcd for C₃₂H₄₀O₄: C, 78.65; H, 8.25. Found: C, 78.34; H, 8.03.

Compound **9h**: Yield 7%; white solid, mp 99-101 °C; IR (KBr) 2954, 2928, 1755 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.78-0.92 (m, 6H), 0.99-1.43 (m, 16H), 1.78 (d, *J* = 14.7 Hz, 1H), 1.81 (s, 3H), 2.32 (dd, *J* = 14.7 and 6.6 Hz, 1H), 3.19-3.26 (m, 1H), 3.66 (t, *J*=7.5 Hz, 1H), 4.57-4.64 (m, 1H), 7.15-7.23 (m, 4H), 7.27-7.48 (m, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.84, 13.86, 13.94, 22.39, 22.52, 25.52, 29.69, 30.80, 31.33, 31.48, 34.20, 38.10, 41.48, 50.72, 82.36, 89.95, 126.00, 127.60, 127.67, 128.28, 128.90, 129.07, 129.47, 131.59, 136.56, 162.73, 172.96, 178.69; ESIMS *m*/*z* 489 (M⁺+1). Anal. Calcd for C₃₂H₄₀O₄: C, 78.65; H, 8.25. Found: C, 78.77; H, 8.50.

Compound **8i**: Yield 28%; white solid, mp 98-100 °C; IR (KBr) 2955, 2930, 1759 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.68 (t, *J* = 7.0 Hz, 3H), 0.80 (t, *J* = 7.0 Hz, 3H), 0.83-0.91 (m, 3H), 0.93-0.99 (m, 4H), 1.14-1.27 (m, 7H), 1.86 (s, 3H), 1.99 (dd, *J* = 15.0 and 10.5 Hz, 1H), 2.17-2.23 (m, 1H), 2.28-2.34 (m, 1H), 2.70 (dt, *J* = 10.5 and 2.5 Hz, 1H), 2.82-2.87 (m, 1H), 3.05 (dd, *J* = 15.0 and 2.5 Hz, 1H), 5.63 (d, *J* = 6.0 Hz, 1H), 7.19 (d, *J* = 7.5 Hz, 2H), 7.27-7.29 (m, 4H), 7.41 (d, *J* = 4.0 Hz, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ 8.99, 13.76, 13.77, 22.04, 22.27, 26.07, 26.25, 27.48, 28.56, 31.48, 31.87, 36.44, 43.54, 44.97, 83.06, 90.27, 122.04, 125.54, 125.60, 127.96, 128.38, 128.51, 129.07, 135.91 (2C), 167.90, 173.91, 179.64; ESIMS *m/z* 489 (M⁺+1). Anal. Calcd for C₃₂H₄₀O₄: C, 78.65; H, 8.25. Found: C, 78.44; H, 8.47.

Compound **9i**: Yield 2%; white solid, mp 113-115 °C; IR (KBr) 2955, 2930, 2860, 1760 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.77-0.82 (m, 6H), 0.86-1.01 (m, 7H), 1.08-1.32 (m, 7H), 1.89 (s, 3H), 2.22-2.78 (m, 1H), 2.33-2.36 (m, 1H), 2.40-2.46 (m, 1H), 2.55-2.58 (m, 1H), 2.61 (dd, *J* = 15.0 and 8.5 Hz, 1H), 2.88 (dd, *J* = 15.0 and 3.5 Hz, 1H), 5.62 (d, *J* = 6.5 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 2H), 7.30-7.40 (m, 8H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.03, 13.76, 13.87, 22.01, 22.36, 26.63, 26.71, 27.03, 28.45, 31.79, 31.90, 34.60, 42.15, 46.47, 82.88, 89.48, 123.88, 124.91, 125.65, 128.18, 128.50, 128.63, 128.82, 135.67, 138.50, 166.28, 173.94, 179.29; ESIMS *m*/*z* 489 (M⁺+1). Anal. Calcd for C₃₂H₄₀O₄: C, 78.65; H, 8.25. Found: C, 78.32; H, 8.23.

Typical procedure for the synthesis of compound 11a. To a stirred mixture of **5a** (250 mg, 1.0 mmol) and methyl acrylate (258 mg, 3.0 mmol) in CH₃CN (2 mL) was added DBU (46 mg, 0.3 mmol) and stirred at room temperature for 1 h under nitrogen atmosphere. After aqueous workup and column chromatographic purification process (hexanes/ EtOAc, 9:1) **11a** (302 mg, 90%) was isolated as colorless oil. Other compounds **11b-d** were synthesized similarly and the spectro-

scopic data of **11a-d** are as follows.

Compound **11a**: Yield 90%; white solid, mp 99-101 °C; IR (KBr) 1755 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.87 (s, 3H), 2.32-2.48 (m, 3H), 2.67-2.80 (m, 1H), 3.64 (s, 3H), 6.80-6.83 (m, 2H), 7.17-7.20 (m, 2H), 7.30-7.38 (m, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.62, 28.53, 31.19, 51.81, 89.75, 124.79, 125.78, 127.95, 128.51, 128.62 (2C), 129.30, 131.31, 136.79, 163.91, 173.09, 173.60; ESIMS *m/z* 337 (M⁺+1). Anal. Calcd for C₂₁H₂₀O₄: C, 74.98; H, 5.99. Found: C, 74.77; H, 6.23.

Compound **11b**: Yield 70%; white solid, mp 151-153 °C; IR (KBr) 1760 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.87 (s, 3H), 2.26-2.53 (m, 3H), 2.72-2.82 (m, 1H), 6.79-6.83 (m, 2H), 7.10-7.17 (m, 2H), 7.31-7.44 (m, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.61, 12.23, 32.46, 88.73, 118.69, 125.12, 125.53, 127.86, 128.78, 128.87, 128.94, 129.60, 130.66, 135.46, 163.31, 172.97; ESIMS *m*/*z* 304 (M⁺+1). Anal. Calcd for C₂₀H₁₇NO₂: C, 79.19; H, 5.65; N, 4.62. Found: C, 79.02; H, 5.86; N, 4.36.

Compound **11c**: Yield 96%; white solid, mp 133-135 °C; IR (KBr) 1759, 1149 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.83 (s, 3H), 2.43-2.53 (m, 1H), 2.79-2.89 (m, 1H), 3.03-3.13 (m, 1H), 3.18-3.28 (m, 1H), 6.75-6.79 (m, 2H), 7.08-7.13 (m, 2H), 7.20-7.42 (m, 6H), 7.53-7.58 (m 2H), 7.63-7.69 (m, 1H), 7.85-7.89 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.51, 29.14, 51.39, 88.81, 124.83, 125.50, 127.77, 127.85, 128.73, 128.76, 128.79, 129.38, 129.49, 130.64, 133.95, 135.68, 138.74, 163.88, 173.01; ESIMS *m/z* 419 (M⁺+1). Anal. Calcd for C₂₅H₂₂O₄S: C, 71.75; H, 5.30. Found: C, 71.54; H, 5.21.

Compound **11d**: Yield 66%; white solid, mp 141-143 °C; IR (KBr) 1759, 1714 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.50-1.61 (m, 1H), 1.65-1.72 (m, 2H), 1.77 (s, 3H), 2.00-2.07 (m, 1H), 2.26-2.55 (m, 4H), 2.68-2.77 (m, 1H), 6.82-6.85 (m, 2H), 7.04-7.07 (m, 2H), 7.24-7.29 (m, 3H), 7.33-7.41 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.38, 24.69, 25.83, 41.01, 42.06, 42.88, 92.40, 125.31, 125.41, 127.89, 128.09, 128.41, 128.71, 129.25, 131.29, 136.89, 163.45, 173.63, 210.45; ESIMS *m/z* 347 (M⁺+1). Anal. Calcd for C₂₃H₂₂O₃: C, 79.74; H, 6.40. Found: C, 79.98; H, 6.37.

Typical procedure for the allylation of compound 5a. To a stirred mixture of 5a (250 mg, 1.0 mmol) and allyl bromide (12a, 363 mg, 3.0 mmol) in CH₃CN (2 mL) was added DBU (46 mg, 0.3 mmol) and stirred at room temperature for 1 h under nitrogen atmosphere. After aqueous workup and column chromatographic purification process (hexanes/EtOAc, 20:1) 13a (41 mg, 14%) and 14a (194 mg, 67%) were isolated as colorless oil. Other compounds were synthesized similarly and the spectroscopic data of 13a, 13b, 14a-c and 15c are as follows.

Compound **13a**: Yield 14%; colorless oil; IR (film) 1757 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.90 (s, 3H), 2.82-2.90 (m, 1H), 3.07-3.15 (m, 1H), 5.07-5.17 (m, 2H), 5.64-5.78 (m, 1H), 6.77-6.83 (m, 2H), 7.21-7.29 (m, 3H), 7.30-7.39 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.67, 39.61, 89.61, 120.29, 125.22, 126.02, 128.10, 128.47, 128.50, 128.54, 129.18, 130.50, 131.66, 137.57, 163.15, 173.96; ESIMS *m/z* 291 (M⁺+1). Anal. Calcd for C₂₀H₁₈O₂: C, 82.73; H, 6.25. Found: C, 82.55; H, 6.48.

Compound 13b: Yield 4%; colorless oil; IR (film) 1755

cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.77 (s, 3H), 3.41 (d, *J* = 13.8 Hz, 1H), 3.75 (d, *J* = 13.8 Hz, 1H), 6.80-6.84 (m, 2H), 7.01-7.04 (m, 2H), 7.10-7.41 (m, 11H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.91, 41.22, 89.67, 125.73, 126.36, 127.07, 127.91, 128.45, 128.68, 128.70 (2C), 129.37, 130.69, 131.68, 133.98, 138.02, 161.51, 173.71; ESIMS *m/z* 341 (M⁺+1). Anal. Calcd for C₂₄H₂₀O₂: C, 84.68; H, 5.92. Found: C, 84.71; H, 6.17.

Compound **14a**: Yield 67%; white solid, mp 81-82 °C; IR (film) 1797 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.42 (s, 3H), 2.34-2.42 (m, 1H), 2.47-2.55 (m, 1H), 5.10-5.19 (m, 2H), 5.68-5.82 (m, 1H), 7.17-7.35 (m, 7H), 7.37-7.46 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 22.48, 40.90, 52.85, 119.54, 121.44, 126.92, 128.21, 128.31, 128.46, 129.02, 129.08, 129.64, 132.07, 132.35, 146.15, 179.90; ESIMS *m/z* 291 (M⁺+1). Anal. Calcd for C₂₀H₁₈O₂: C, 82.73; H, 6.25. Found: C, 82.63; H, 5.97.

Compound **14b**: Yield 70%; colorless oil; IR (film) 1793 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.62 (s, 3H), 2.93 (d, *J* = 13.8 Hz, 1H), 3.17 (d, *J* = 13.8 Hz, 1H), 7.09-7.14 (m, 2H), 7.17-7.25 (m, 10H), 7.37-7.39 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 23.78, 42.97, 53.71, 121.15, 127.02, 127.23, 128.09, 128.12, 128.16, 128.55, 128.84, 129.03, 129.57, 129.74, 132.35, 135.74, 146.78, 180.18; ESIMS *m*/*z* 341 (M⁺+1). Anal. Calcd for C₂₄H₂₀O₂: C, 84.68; H, 5.92. Found: C, 84.44; H, 5.65.

Compound **14c**: Yield 52%; white solid, mp 99-101 °C; IR (KBr) 1798, 1046 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.38 (s, 6H), 7.18-7.28 (m, 5H), 7.30-7.34 (m, 2H), 7.40-7.45 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 22.38, 48.14, 123.67, 126.78, 128.24, 128.29, 128.60, 128.94, 129.07, 129.60, 132.43, 145.25, 181.25; ESIMS *m*/*z* 265 (M⁺+1). Anal. Calcd for C₁₈H₁₆O₂: C, 81.79; H, 6.10. Found: C, 81.86; H, 6.43.

Compound **15c**: Yield 93%; white solid, mp 61-62 °C; IR (KBr) 1716, 1668, 1268, 1134 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.06 (s, 3H), 3.56 (s, 3H), 7.26-7.52 (m, 8H), 7.92-7.96 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 15.56, 51.99, 128.10, 128.46, 128.54, 128.61, 128.68, 128.90, 132.93, 134.83, 135.76, 150.84, 167.62, 196.24; ESIMS *m/z* 281 (M⁺+1). Anal. Calcd for C₁₈H₁₆O₃: C, 77.12; H, 5.75. Found: C, 77.46; H, 5.79.

Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, KRF-2007-313-C00417). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

 (a) Cheung, A. K.; Snapper, M. L. J. Am. Chem. Soc. 2002, 124, 11584-11585. (b) Magnuson, S. R.; Sepp-Lorenzino, L.; Rosen, N.; Danishefsky, S. J. J. Am. Chem. Soc. 1998, 120, 1615-1616.
 (c) Basabe, P.; Delgado, S.; Marcos, I. S.; Diez, D.; Diego, A.; de Roman, M.; Sanz, F.; Urones, J. G. Tetrahedron 2007, 63, 8939-8948. (d) Basabe, P.; Delgado, S.; Marcos, I. S.; Diez, D.; Diego, A.; De Roman, M.; Urones, J. G. J. Org. Chem. 2005, 70, 9480-9485. (e) Marcos, I. S.; Escola, M. A.; Moro, R. F.; Basabe, P.; Diez, D.; Sanz, F.; Mollinedo, F.; de la Iglesia-Vicente, J.; Sierra, B. G.; Urones, J. G. Bioorg. Med. Chem. **2007**, *15*, 5719-5737. (f) Guerrero, M. D.; Aquino, M.; Bruno, I.; Terencio, M. C.; Paya, M.; Riccio, R.; Gomez-Paloma, L. J. *Med. Chem.* **2007**, *50*, 2176-2184 and further references cited therein.

- For some recent synthesis of γ-hydroxybutenolides, see: (a) Ma, S.; Wu, B.; Shi, Z. J. Org. Chem. 2004, 69, 1429-1431. (b) Ma, S.; Wu, B.; Ma, Z. Faming Zhuanli Shenqing Gongkai Shumingshu 2004, CN 1526709A (Chem. Abstr. 143, 97252). (c) Holtke, C.; Law, M. P.; Wagner, S.; Breyholz, H.-J.; Kopka, K.; Bremer, C.; Levkau, B.; Schober, O.; Schafers, M. Bioorg. Med. Chem. 2006, 14, 1910-1917. (d) Padakanti, S.; Veeramaneni, V. R.; Pattabiraman, V. R.; Pal, M.; Yeleswarapu, K. R. Tetrahedron Lett. 2002, 43, 8715-8719. (e) Liu, H.-M.; Zhang, F.; Zhang, J.; Li, S. Carbohydr. Res. 2003, 338, 1737-1743. (f) Gudipati, V.; Curran, D. P.; Wilcox, C. S. J. Org. Chem. 2006, 71, 3599-3607. (g) Patt, W. C.; Edmunds, J. J.; Repine, J. T.; Berryman, K. A.; Reisdorph, B. R.; Lee, C.; Plummer, M. S.; Shahripour, A.; Haleen, S. J.; Keiser, J. A.; Flynn, M. A.; Welch, K. M.; Reynolds, E. E.; Rubin, R.; Tobias, B.; Hallak, H.; Doherty, A. M. J. Med. Chem. 1997, 40, 1063-1074.
- For the synthesis of γ-hydroxybutenolides from furans, see: (a) Patil, S. N.; Liu, F. J. Org. Chem. 2007, 72, 6305-6308. (b) Patil, S. N.; Liu, F. Org. Lett. 2007, 9, 195-198. (c) Aquino, M.; Bruno, I.; Riccio, R.; Gomez-Paloma, L. Org. Lett. 2006, 8, 4831-4834.
- 4. For the synthesis of α-methylene-γ-butyrolactones, see: (a) Paquette, L. A.; Mendez-Andino, J. *Tetrahedron Lett.* **1999**, *40*, 4301-4304. (b) Lee, K. Y.; Park, D. Y.; Kim, J. N. *Bull. Korean Chem. Soc.* **2006**, *27*, 1489-1492. (c) Lee, A. S.-Y.; Chang, Y.-T.; Wang, S.-H.; Chu, S.-F. *Tetrahedron Lett.* **2002**, *43*, 8489-8492. (d) Kabalka, G. W.; Venkataiah, B.; Dong, G. *Tetrahedron Lett.* **2005**, *46*, 4209-4211. (e) Kabalka, G. W.; Venkataiah, B.; Chen, C. *Tetrahedron Lett.* **2006**, *47*, 4187-4189. (f) Kabalka, G. W.; Venkataiah, B. *Tetrahedron Lett.* **2005**, *46*, 7325-7328. (g) Reid, C. S.; Zhang, Y.; Li, C.-J. Org. *Biomol. Chem.* **2007**, *5*, 3589-3591. (h) Yu, S. H.; Ferguson, M. J.; McDonald, R.; Hall, D. G. J. Am. Chem. Soc. **2005**, *127*, 12808-12809. (i) Ramachandran, P. V.; Garner, G.; Pratihar, D. Org. Lett. **2007**, *9*, 4753-4756.
- For the general review on Baylis-Hillman chemistry, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. *Chem. Rev.* 2003, *103*, 811-891. (b) Ciganek, E. In *Organic Reactions*; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1997; Vol. 51, pp 201-350. (c) Basavaiah, D.; Rao, P. D.; Hyma, R. S. *Tetrahedron* 1996, *52*, 8001-8062. (d) Kim, J. N.; Lee, K. Y. *Curr. Org. Chem.* 2002, *6*, 627-645. (e) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. *Bull. Korean Chem. Soc.* 2005, *26*, 1481-1490. (f) Singh, V.; Batra, S. *Tetrahedron* 2008, *64*, 4511-4574 and further references cited therein.
- For our recent contributions in Baylis-Hillman chemistry, see:

 (a) Gowrisankar, S.; Lee, H. S.; Kim, J. M.; Kim, J. N. *Tetrahedron Lett.* 2008, 49, 1670-1673.
 (b) Kim, J. M.; Kim, K. H.; Kim, T. H.; Kim, J. N. *Tetrahedron Lett.* 2008, 49, 3248-3251.
 (c) Gowrisankar, S.; Lee, H. S.; Lee, K. Y.; Lee, J.-E.; Kim, J. N. *Tetrahedron Lett.* 2007, 48, 8619-8622.
 (d) Lee, H. S.; Kim, S. H.; Kim, T. H.; Kim, J. N. *Tetrahedron Lett.* 2008, 49, 1773-1776.
 (e) Kim, S. H.; Kim, K. H.; Kim, H. S.; Kim, J. N. *Tetrahedron Lett.* 2008, 49, 1948-1951.
 (f) Lee, H. S.; Kim, H. S.; Kim, J. M.; Kim, J. N. *Tetrahedron* 2008, 64, 2397-2404.
- For the isomerization of double bond under catalytic hydrogenation conditions, see: (a) Kabalka, G. W.; Venkataiah, B. *Tetrahedron Lett.* 2005, 46, 7325-7328 and the compound 5a was reported, see: (b) Shindo, M.; Yoshikawa, T.; Itou, Y.; Mori, S.; Nishii, T.; Shishido, K. *Chem. Eur. J.* 2006, 12, 524-536. (c) Ma, S.; Shi, Z. *Chem. Commun.*, 2002, 540-541. (d) Delaunay, J.; Orliac-Le Moing, A.; Simonet, J. *Tetrahedron* 1988, 44, 7089-7094.
- For the base-promoted aerobic oxidation process in a similar system, see: (a) Black, W. C.; Brideau, C.; Chan, C.-C.; Charleson, S.; Cromlish, W.; Gordon, R.; Grimm, E. L.; Hughes, G.; Leger, S.; Li, C.-S.; Riendeau, D.; Therien, M.; Wang, Z.;

Xu, L.-J.; Prasit, P. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 1195-1198. (b) Peters, R.; Althaus, M.; Nagy, A.-L. *Org. Biomol. Chem.* **2006**, *4*, 498-509. (c) Watanabe, T.; Ishikawa, T. *Tetrahedron Lett.* **1999**, *40*, 7795-7798.

- For the similar hydroperoxides formation, see: (a) Iesce, M. R.; Cermola, F.; De Lorenzo, F.; Orabona, I.; Graziano, M. L. J. Org. Chem. 2001, 66, 4732-4735. (b) Schobert, R.; Stehle, R.; Milius, W. J. Org. Chem. 2003, 68, 9827-9830. (c) Iesce, M. R.; Graziano, M. L.; Cermola, F.; Scarpati, R. J. Chem. Soc., Chem. Commun. 1991, 1061-1062.
- For the synthesis of butenolide-butyrolactone and butenolide dimeric compounds, see: (a) Sulikowski, G. A.; Agnelli, F.; Corbett, R. M. J. Org. Chem. 2000, 65, 337-342. (b) Bagal, S. K.; Adlington, R. M.; Baldwin, J. E.; Marquez, R.J. Org. Chem. 2004, 69, 9100-9108. (c) Bagal, S. K.; Adlington, R. M.; Baldwin, J. E.; Marquez, R.; Cowley, A. Org. Lett. 2003, 5, 3049-3052. (d) Bagal, S. K.; Adlington, R. M.; Marquez, R.; Cowley, A. R.; Baldwin, J. E. Tetrahedron Lett. 2003, 44, 4993-4996. (e) Ma, S.; Yu, Z. Org. Lett. 2003, 5, 1507-1510. (f) Coperet, C.; Sugihara, T.; Wu, G.; Shimoyama, I.; Negishi, E.-I. J. Am. Chem. Soc. 1995, 117, 3422-3431. (g) Ospina, C. A.; Rodriguez, A. D.; Sanchez, J. A.; Ortega-Barria, E.; Capson, T. L.; Mayer, A. M. S. J. Nat. Prod. 2005, 68, 1519-1526. (h) Kupchan, S. M.; Aynehchi, Y.; Cassady, J. M.; Schnoes, H. K.; Burlingame, A. L. J. Org. Chem. 1969, 34, 3867-3875.
- 11. Crystal data of compound **7a**: solvent of crystal growth (CH_2Cl_2) ; empirical formula $C_{17}H_{14}O_3$, Fw = 266.28, crystal

dimensions $0.40 \times 0.20 \times 0.10 \text{ mm}^3$, orthorhombic, space group Fdd2, a = 18.2631(19) Å, b = 35.999(3) Å, c = 8.2668(7) Å, $\alpha =$ 90°, $\beta = 90°$, $\gamma = 90°$, V = 5435.0(9) Å³, Z = 16, $D_{\text{calcd}} = 1.302$ mg/m³. $F_{000} = 2240$, MoK α ($\lambda = 0.71073$ Å), $R_1 = 0.0512$, w $R_2 =$ 0.1117 ($I > 2\sigma(I)$). We omitted hydrogen atoms for clarity (Figure 1). The X-ray data has been deposited in CCDC with number 684684.

- 12. Crystal data of compound **8a**: solvent of crystal growth (MeOH); empirical formula $C_{34}H_{28}O_4$, *Fw* = 500.56, crystal dimensions 0.30 x 0.30 x 0.10 mm³, triclinic, space group P-1, a = 9.3062(5) Å, b = 9.7502(5) Å, c = 15.4367(8) Å, α = 82.6350(10)°, β = 83.4040(10)°, γ = 71.6410(10)°, *V* = 1314.29(12) Å³, *Z* = 2, *D*_{calcd} = 1.265 mg/m³. *F*₀₀₀ = 528, MoKα (λ = 0.71073 Å), *R*₁ = 0.0590, w*R*₂ = 0.1188 (*I* > 2σ(*I*)). We omitted hydrogen atoms for clarity (Figure 1). The X-ray data has been deposited in CCDC with number 684685.
- 13. For the Michael type self-dimerization and intermolecular Michael addition reactions of butenolides, see: Okano, T.; Chokai, M.; Eguchi, S.; Hayakawa, Y. *Tetrahedron* **2000**, *56*, 6219-6222.
- For the synthesis of carbon-chain substituted butenolides, see:
 (a) Ma, S.; Lu, L.; Lu, P. *J. Org. Chem.* **2005**, *70*, 1063-1065. (b) Khim, S.-K.; Dai, M.; Zhang, X.; Chen, L.; Pettus, L.; Thakkar, K.; Schultz, A. G. *J. Org. Chem.* **2004**, *69*, 7728-7733.
- 15. Franck, X.; Figadere, B. Tetrahedron Lett. 2002, 43, 1449-1451.
- 16. Shieh, W.-C.; Dell, S.; Repic, O. J. Org. Chem. 2002, 67, 2188-2191.