Intracluster Ion-Molecule Reactions within Ti⁺(CH₂FCH₂OH)_n Clusters

Tae Kyu Kim,[†] Young-Mi Koo, Jin-Soo Kim, Dong Woon Jung, and Kwang-Woo Jung^{*}

Department of Chemistry and Institute of Nanoscience & Tech., Wonkwang University, Iksan, Chonbuk 570-749, Korea

*E-mail: kwjung@wonkwang.ac.kr

[†]Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Pusan 609-735, Korea Received December 24, 2007

Key Words : Ion-molecule reaction, Titanium, Fluorinated ethanol, Heterocluster

The importance of chemical reactions induced by interactions between transition metal ions and hydrocarbon molecules in a wide range of biological, chemical, and physical processes has prompted extensive studies aimed at elucidating the catalytic activities of transition metal ions.¹ The Ti⁺ ion activates C-C, C-H, and O-O bonds in specific gas-phase reactions.² Although the reactions of Ti⁺ with small molecules have been investigated in numerous works, few studies have examined the mechanism and energetics of the reactions of Ti⁺ with molecules possessing more than one functional group. Study of the specific chemical dynamics of reactions within cluster ions provides valuable information on the changes in the reaction pathways as a function of cluster size.³

In the present study, we investigated $Ti^+(CH_2FCH_2OH)_n$ heterocluster systems to search for new intracluster ionmolecule reactions occurring within the ionized clusters and to elucidate reactive pathways not ordinarily found in bimolecular ion-molecule collisions. The apparatus used in this work has been described previously.⁴ Briefly, laserablated species containing Ti^+ ions traversed perpendicular to a supersonic beam of CH₂FCH₂OH clusters 1 cm away

Figure 1. Mass spectrum of the cluster ions produced by reactive collisions of laser-ablated Ti⁺ and 2-fluoroethanol (FE) clusters seeded in 1.7 atm Ar. b_n : Ti⁺(OCH₂CH₂F)(FE)_n; c_n : Ti⁺(OCH₂CH₂-F)₂(FE)_n; m_n : (FE)_nH⁺. Ab initio calculations show the optimized ground-state structures for the two possible Ti⁺-FE complexes.

from a rotating target, where they reacted with the reactant clusters. The resulting ions were then analyzed by a reflectron time-of-flight mass spectrometer (RTOFMS). Figure 1 shows a typical TOF mass spectrum of the product species. In the low mass region, the reaction products consist of TiO⁺ (m/e = 64) and TiFOH⁺ (m/e = 84) formed from the ion-molecule reactions of Ti⁺ and 2-fluoroethanol (FE). The prominent peaks in the large mass region of the spectrum correspond to cluster ions with formulas Ti⁺(OCH₂CH₂F)-(FE)_n (denoted b_n), Ti⁺(OCH₂CH₂F)₂(FE)_n (denoted c_n), and (FE)_nH⁺ (denoted m_n). The presence of (FE)_nH⁺ cluster ions can be attributed to intracluster protonation of the parent (FE)_n⁺ ions formed in the region where the laser-ablated plume and supersonic FE cluster beam intersect.

To interpret the reaction mechanism, we calculated the ground state structures and absolute energies of the Ti⁺-FE complexes and related reaction products at the B3LYP/6-311++G(d,p) level using the Gaussian 03W package, which includes Becke's three parameter nonlocal hybrid exchange functional and the nonlocal correlation functional of Lee, Yang, and Parr.⁵ The optimized structures of the two Ti⁺-FE isomers (referred to as I and II) are depicted in Figure 1. Complex I represents the case in which the Ti⁺ ion approaches to a distance of 2.04 Å from the F atom of the alkyl group, thereby activating the C-F bond. Complex II corresponds to the case in which Ti⁺ interacts with both the O and F atoms of FE, forming a complex containing a fivemembered ring. Note that structure II is more stable than structure I by 28.6 kcal/mol, suggesting that complex II is the more favorable of the two structures in the experiments carried out in the present work. Moreover, since the Ti⁺ ion in complex II is closer to the O atom (2.15 Å) than the F atom (2.24 Å), rupture of the C-O and O-H bonds appears to be more facile than rupturing the C-F bond.

Scheme 1 provides a summary of the reaction pathways of Ti⁺ + FE, along with the calculated reaction energies. The reaction pathways can be divided into two categories: (i) C-O bond activation and (ii) O-H bond activation. Ti⁺ insertion into the C-O bond of a FE molecule can lead to a [HO-Ti⁺-CH₂CH₂F] intermediate. This intermediate could undergo α -H atom transfer from the OH group to the Ti⁺ ion, followed by CH₃CH₂F elimination, to produce TiO⁺. This mechanism is analogous to the Ti⁺ + H₂O \rightarrow TiO⁺ + H₂ reaction, in which the dehydrogenation channel proceeds from a [H-Ti⁺-OH] intermediate by a H migration from O to

 $(\stackrel{\text{(ii)}}{\longrightarrow} \text{O-H} \quad [\text{H} - \text{Ti}^+ - \text{OCH}_2\text{CH}_2\text{F}] \longrightarrow \text{Ti}^+\text{OCH}_2\text{CH}_2\text{F} + \text{H} (+7.4)$

Scheme 1. Summary of the observed reaction pathways of $T_1^+ + CH_2FCH_2OH$ along with the calculated reaction energies (kcal/mol).

form [H₂-Ti⁺-O] because Ti⁺ has three valence electrons.⁶ Alternatively, the [HO-Ti⁺-CH₂CH₂F] intermediate could produce TiFOH⁺ followed by transfer of a F atom attached to the β -carbon and elimination of C₂H₄. This pathway resembles reactions of Fe⁺ + ClCH₂CH₂Br and Co⁺ + ClCH₂CH₂OH, in which the metal ion interacts with both functional groups in a five-membered ring configuration, leading to the formation of FeClBr⁺ and CoClOH⁺, respectively, by elimination of ethylene.⁷ The calculation results also indicate that both the TiO⁺ and TiFOH⁺ product channels are thermodynamically favorable due to their high exothermicity (-107.8 and -148.5 kcal/mol, respectively).

As a major intracluster ion-molecule reaction channel, the Ti^+ ion can insert into the O-H bond of FE molecules within the parent $Ti^+(FE)_m$ clusters, followed by H-elimination:

$$Ti^{+}(FE)_{m} \rightarrow [H-Ti^{+}-OCH_{2}CH_{2}F]^{\ddagger}(FE)_{m-1} \rightarrow$$
$$Ti^{+}(OCH_{2}CH_{2}F)(FE)_{n} + H + (m-n-1)FE$$
(1)

It is noteworthy that the $Ti^+OCH_2CH_2F + H$ formation channel is clearly observed within the heteroclusters even though it is slightly endothermic (7.4 kcal/mol). A surprising finding for $Ti^+(OCH_2CH_2F)_2(FE)_n$ ions is that H-elimination in FE by Ti^+ is possible for up to two FE molecules.

$$\mathrm{Ti}^{+}(\mathrm{OCH}_{2}\mathrm{CH}_{2}\mathrm{F})(\mathrm{FE})_{n} \rightarrow \mathrm{Ti}^{+}(\mathrm{OCH}_{2}\mathrm{CH}_{2}\mathrm{F})_{2}(\mathrm{FE})_{n-1} + 2\mathrm{H} \quad (2)$$

Within the stabilizing environs of a heterocluster, insertion of a Ti⁺(OCH₂CH₂F) ion into a second FE molecule produces the (CH₂FCH₂O)Ti⁺(H)(OCH₂CH₂F) intermediate. This intermediate then dissociates internally and Ti⁺(OCH₂-CH₂F)₂ ion is produced *via* H-elimination. An abrupt decrease in the intensity of Ti⁺(OCH₂CH₂F)_m(FE)_n cluster ions occurs for $m \ge 3$, which reflects the fact that the reactivity of the Ti⁺ ion after Ti⁺(OCH₂CH₂F)₂(FE)_n formation is strongly suppressed by the presence of the ethoxy ligands. This finding is supported by the results of a previous study of the intracluster reactions of Ti⁺ with alcohol compounds containing different alkyl groups, which disclosed a large reduction in the reactivity of Ti⁺ due to the steric hindrance of the alkyl radical.⁸

In conclusion, we have investigated ion-molecule reactions within mixed $Ti^+(FE)_n$ heteroclusters using a combination of laser ablation and supersonic beam expansion. The observation of TiO⁺ and TiFOH⁺ ions is understood on the basis of a C-O insertion reaction followed by C₂H₅F and C₂H₄ fragmentations, respectively. The intracluster ion-molecule reactions produce a major sequence of Ti⁺(OCH₂CH₂F)_m-(FE)_n ions (m = 1,2), which is attributed to sequential insertions of Ti⁺ into the O-H bond of FE followed by H-eliminations. *Ab initio* calculations were carried out to study the reaction pathways and energetics of the proposed mechanisms.

Acknowledgments. This work was supported by Wonkwang University in 2005.

References

- (a) Alvarez, E. J.; Wu, H.-F.; Liou, C.-C.; Brodbelt, J. J. Am. Chem. Soc. 1996, 118, 9138. (b) Zheng, G; Kemper, P. R.; Bowers, M. T. Int. J. Mass Spectrom. 2001, 265, 210. (c) Siegbahn, P. E. M.; Bloomberg, M. R. A. Chem. Rev. 2000, 100, 421. (d) Dougherty, D. A. Science 1996, 271, 163. (e) Sigel, A.; Sigel, H. In Metal Ions in Biological Systems; Marcel Dekker: New York, 1996; Vols. 32 and 33. (f) Whitfield, D. M.; Stojkovski, S.; Sarkar, B. Coord. Chem. Rev. 1993, 122, 171.
- (a) Byrd, G. C.; Burnier, R. C.; Freiser, B. S. J. Am. Chem. Soc. 1982, 104, 3565. (b) Tolbert, M. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1986, 108, 7509. (c) Yi, S.-S.; Noll, R. J.; Weisshaar, J. C. J. Phys. Chem. A 1999, 103, 7254. (d) Reicher, E. L.; Weisshaar, J. C. J. Phys. Chem. A 2002, 106, 5563. (e) Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1978, 100, 163.
- (a) Garvey, J. F.; Peifer, W. R.; Coolbaugh, M. T. Acc. Chem. Res. 1991, 24, 48. (b) Shin, D. N.; Jung, K.-W.; Jung, K.-H. J. Am. Chem. Soc. 1992, 114, 6926. (c) Choi, S.-S.; Jung, K.-W.; Jung, K.-H. Int. J. Mass Spectrom. Ion Processes 1993, 124, 11. (d) Choi, S.-S.; So, H.-Y. Bull. Korean Chem. Soc. 2006, 27, 539. (e) Koo, Y.-M.; An, H.-J.; Yoo, S.-K.; Jung, K.-W. Bull. Korean Chem. Soc. 2003, 24, 197.
- Koo, Y.-M.; Kim, J.-H.; Lee, H.; Jung, K.-W. J. Phys. Chem. A 2002, 106, 2465.
- 5. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- Guo, B. C.; Kerns, K. P.; Castleman, A. W., Jr. J. Phys. Chem. 1992, 96, 4879.
- Lombarski, M.; Allison, J. Int. J. Mass Spectrom. Ion Phys. 1983, 49, 281.
- (a) Koo, Y.-M.; An, H.-J.; Yoo, S.-K.; Jung, K.-W. Int. J. Mass Spectrom. 2003, 226, 305. (b) Koo, Y.-M.; Kim, M.-K.; Jung, K.-W. Int. J. Mass Spectrom. 2005, 243, 97. (c) Koo, Y.-M.; Kim, T. K.; Jung, D. W.; Jung, K.-W. J. Phys. Chem. A 2006, 110, 13724.