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Combining the analytical transfer matrix method with supersymmetry algebra, a new quantization condition is
suggested. To demonstrate the efficiency of the new quantization condition, the eigenenergies of the Coulomb
potential are analytically derived. The scattering-led phase shifts are also determined and they are the same for
all Coulomb potential states. It is found that the new quantization condition is mathematically simple and exact.
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Introduction

For a one-dimensional system, when a particle is moving
between two classical turning points, its kinetic energy
cannot be larger than the potential energy. Therefore the
particle cannot escape out from the potential well but
oscillates between the two turning points. However quantum
mechanically the particle can enter the classically forbidden
region. The exponentially decaying wave function in the
classically forbidden region should be connected smoothly
to the oscillating wave function in the classically allowed
region at the classical turning points. The wave reflected at
the turning point has a different phase, relative to the incom-
ing wave traveling towards the turning point. Therefore the
phase of wave function should change through the turning
points and the change is called a phase shift. Furthermore,
there exists a scattering phenomenon between the two
turning points unless the potential is constant. The scattering
also causes an additional phase shift that is called the
scattering-led phase shift.1

The existence of the additional phase shift is ignored in the
well known WKB (Wentzel-Kramers-Brillouin) approxi-
mation (or quantization condition.).2,3 This is the reason why
the WKB quantization is not exact though it is found to be
exact for the harmonic oscillator potential and the Morse
potential. The recently developed analytical transfer matrix
method (ATMM) suggests a new quantization condition that
explicitly includes the additional phase shift. The so-called
complete quantum momentum function is suggested and the
integration of the quantum momentum function over position
variable yields the quantization condition that can describe
the motion of a particle oscillating within a classically bound
region. The ATMM quantization condition has been applied
to various potentials and is considered to be exact.4-8 

We utilize the ATMM quantization condition to generate
the eigenenergy and the additional phase shift of the Coulomb
potential. This approach enables one to directly evaluate the
phase shift. However, there is a great difficulty in evaluating
the phase shift because the phase shift is expressed in terms
of eigenfunctions. That is, one has to predetermine the
eigenfunctions of all eigenstates to use the ATMM quanti-

zation. For the one-dimensional Coulomb potential, the eigen-
functions are, of course, known. Even so, the mathematical
evaluation of the phase shift is still very difficult because the
eigenfunctions of excited states are very complicated.9

In this work, adopting the supersymmetry algebra, a new
and simple quantization condition for evaluating the phase
shift and eigenenergy is suggested.10-12 Since the supersym-
metric partner Hamiltonians share the common eigenenergies
of the original Hamiltonian, only the ground state eigen-
functions (or superpotentials) of partner Hamiltonians,
instead of all the eigenfunctions of the original Hamiltonian,
are required to evaluate the phase shift when the new
quantization condition is used. It reduces a mathematical
difficulty a lot.

In the following sections the Coulomb potential system is
explicitly defined. The supersymmetry and the ATMM
quantization condition are introduced. Particularly the
supersymmetry adopted version of the ATMM quantization
condition is presented. The eigenenergy and the phase shift
of the Coulomb potential are presented and analyzed. Finally
the information obtained from this work is provided in the
conclusion section.

Coulomb Potential

The Coulomb potential energy function is widely used in
chemistry.13 And the most well known one is the proton-
electron attraction potential in a hydrogen atom. The one-
dimensional Coulomb potential problem can be analytically
solved. The eigenfunctions of the Coulomb potential are
expressed in terms of the Laguerre polynomials and the
eigenenergies are obtained in a closed form. Let us define
the one-dimensional Coulomb potential explicitly by taking
a simple example.

The radial Schrödinger equation for a hydrogenlike atom
containing one electron of mass Me and a nucleus of mass M,
for a certain angular momentum quantum number l, is
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where μ =[Me/(1 + Me/M)] is the reduced mass, Ze is the
nuclear charge and, of course, e is the unit charge. The
attraction potential between the electron and the nucleus

 is zero at . The Schrödinger equation Eq.
(1) can be exactly solved to generate the N-dependent
eigenenergy EN where

 N = 1, 2, 3, … (2)

The N is called the principal quantum number. The wave
function (or eigenfunction)  depends not only on l
but also on N.  is equivalent to rRNl(r) where RNl(r) is
the customarily defined radial function of a hydrogenlike
atom.13 The boundary condition is that RNl(r) goes to zero at
infinity. Now the angular momentum quantum number l is
limited as l = 0, 1, 2, …, N – 1 in order to satisfy the
boundary condition.

The Schrödinger equation Eq. (1) can be rewritten as

  (0 < r < )
 (3)

where  and .

For convenience a new quantum number n = N − l − 1 (n =
0, 1, 2, …) is introduced. n is, in nature, equivalent to the
number of nodes in the radial wave function . 

In summary, the Coulomb potential system of a certain l is
as follows:13-15

  (0 < r < )
 (4)

where the Coulomb potential (5)

and the eigenenergy  for n = 0, 1, 2, ….
 (6)

Eqs. (4) and (5) are the Coulomb potential system whose
eigenenergy and phase shift will be evaluated using the
ATMM quantization condition1 with the aid of super-
symmetry.10-12 In the next section the supersymmetry is
briefly reviewed and a new ATMM quantization condition
combined with supersymmetry is introduced.

ATMM Combined with Supersymmetry

First some characteristics of supersymmetry are briefly
presented. According to the supersymmetric quantum mech-
anics,12 the raising and lowering operators  for the s-th
supersymmetric partner Hamiltonian H(s) are defined as

  s = 0, 1, 2, … (7)

The superscript (s) is the hierarchy index so that it indicates

the s-th partner Hamiltonian. In this work, the s = 0 case
is the original Hamiltonian. For example,  is equivalent
to the original H in Eq. (4). Likewise, V(0)(r) = V(r),

, and . Here the superpotential
 is, in essence, the minus log derivative of the

ground state (n = 0) wave function  of Hamiltonian
, i.e.,

 (8)

And it satisfies a following Riccati equation

. (9)

Then the original Hamiltonian in Schrödinger equation
Eq. (4) can be rewritten as

  = . (10)

The first supersymmetric partner Hamiltonian is

 = .  (11)

In general the partner Hamiltonian can be generated for any
index s, i.e.,

= .  (12)

From the supersymmetry algebra we easily obtain the
following relations,12

 (13)

 (14)

 (15)

where  is a normalization constant. Note that  is
the s-th state (n = s) wave function of the Coulomb potential
Hamiltonian (H) and  is the ground state (n = 0)
wave function of H(s). Consequently we find that the
hierarchy index s is equivalent to the quantum number n of
the original Hamiltonian. Therefore on we can safely use the
notation of n in replacement of s. In Figure 1, the hierarchy
of supersymmetric partner Hamiltonians, Eq. (13) is illu-
strated. A similar illustration for a rigid symmetric top rotor
can be found in this journal.16

Now let us introduce the quantization condition of the
analytical transfer matrix method.1 The ATMM quantization
condition, for the Schrödinger equation Eq. (4), can be
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summarized as

 n = 0, 1, 2, … (16)

where n is the quantum number. κn is the momentum, i.e.,

 (17)

where V(r) is the potential and εn is the eigenenergy of the n-
th state. rL and rR are inner (short distance) and outer (long
distance) turning point, respectively, i.e.,  =
εn and . κn(r) is always positive between rL and rR .

The so-called scattering-led phase shift δn is

 (18)

where  and . Pn(r) is the

minus log derivative of the n-th state wave function ,

i.e., . Note that .

In order to evaluate the phase shift δn in Eq. (18) one must
predetermine the wave function  of H(=H(0)), which
requires a lot of algebra. Even the  is known, the
integration is very difficult because of the complexity of the
wave function. Here we adopt the supersymmetry algebra to
avoid this difficulty. The quantization condition, Eq. (16)
should be valid not only for H (or ) but also for any
partner Hamiltonian H(n) (or ).  and 
are, of course, different to each other but the eigenenergies
are identical, i.e.,  (see Eq. (13).) Therefore one can
rewrite the quantization condition only for the ground state
(n = 0) of any n-th supersymmetric partner Hamiltonian H(n),
i.e.,

 (19)

 (20)

.  (21)

The superscript (n) denotes the hierarchy of partner
Hamiltonians and the subscript number n (or 0) represents

the n-th state (or ground state) of original Hamiltonian.
Needless to say these two indices can be used interchange-
ably. The new quantization condition (Eqs. (19), (20), and
(21)) will be applied to the Coulomb potential system.

The difference between the original ATMM (Eq. 16) and
the new ATMM with supersymmetry (Eq. 19) lies in what
kind of eigenfunctions is used. In the original ATMM all the
eigenfunctions (including excited ones) of the original
Hamiltonian are required while in the new ATMM only the
eigenfucntions of the ground state of partner Hamiltonians
are required. It is much easier to evaluate the ground state
eigenfunctions than the excited state eigenfunctions. Further-
more the integration involving only the ground state eigen-
functions is also easier.

Eigenenergy and Phase Shift of Coulomb Potential

The Coulomb potential is introduced earlier. Using the
supersymmetry algebra we can determine the superpotential,
etc. The direct way of determining  and  is
as follows. Solving the Riccati equation, Eq. (9) with the
original potential , one obtains  and .
Then using the supersymmetry relationship12 of 

, one can easily

determine  from .17 With the partner poten-
tial , one again solves the Riccati equation to obtain

 and so on. This process can be repeatedly perform-
ed up to any hierarchy n (or s). The results for the Coulomb
potential Hamiltonian given in Eq. (4) are

 (22)

 (23)

. (24)

Of course, the eigenenergies in Eq. (24) are identical with
those in Eq. (6).

Now using the new ATMM with supersymmetry, i.e., Eqs.
(19), (20), and (21), we determine the eigenenergy of the
Coulomb potential Hamiltonian. First the momentum part is

. (25)

The above integral can be found in a literature.15

The phase shift of the n-th partner Hamiltonian H(n), 
in Eq. (21) can be rewritten as, using Eqs. (22) and (23),
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Figure 1. Hierarchy of supersymmetric partner Hamiltonians.
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×  (26)

Let , ,

, then Eq. (26) is reduced to

 

  (27)

Since  and  are the turning points, i.e., 

 and , one immediately finds

that  and the relations; 

and . 

Though the above integrals can be found in integration
tables,18 we list the expressions for the convenience of
interested readers. For real numbers ,

, and

.

The integration result is

 

 . (28)

So the quantization condition Eq. (19) from Eqs. (25) and

(28) is, by setting ,

. (29)

Rearranging it, we obtain the cubic equation to solve,

. (30)

It has three solutions, i.e., 
 and z = n + l

+ 1, but only the positive solution (z = n + l + 1) is meaning-
ful. Therefore, 

. (31)

We finally obtain  that is identical with

the eigenenergy given in Eq. (24). In conclusion the ATMM
quantization condition produces the eigenenergy of the
coulomb potential easily when it is combined with super-
symmetry algebra.

Now let us determine the scattering-led phase shift δn. As
seen in Eq. (28),  of the n-th partner Hamiltonian
depends on the eigenenergy (= ). Inserting the eigen-
energy of Eq. (24) into Eq. (28), it has a simple form, i.e., 

. (32)

Comparing Eq. (5) with Eq. (22), one finds that  can
be obtained by replacing l with n + l in V(r) (=V(0)(r)). One
can evaluate , i.e.,

  . (33)

The radial function of the Coulomb potential  can be
found in quantum chemistry textbooks.13 Comparing the
above Eq. (33) with Eq. (23), it is found  can be
obtained by replacing l with n + l in . Recall that

. This is a characteristic of the so-called
translational shape invariant potentials and, of course, the
Coulomb potential is one of them.12 Therefore one can
conclude that the scattering-led phase shift1 of the Coulomb
potential  can be obtained by simply replacing n + l with l
in  in Eq. (32), i.e.,

. (34)

Generally it is believed that δn depends on the quantum
number n. Our numerical work on a distorted Morse poten-
tial confirmed that δn is indeed n-dependent.19 However, for
the Coulomb potential, we find in Eq. (34) that δn is
independent of n, i.e., the scattering-led phase shift is
constant for all n states. So far it has been known that δn for
the harmonic oscillator potential and the Morse potential
have a constant δn of 1/2π.5,9 The reason behind this pheno-
menon is not understood yet. Furthermore our preliminary
work shows that all the shape invariant potentials have a
constant δn.20

Conclusion and Discussion

Combining the analytical transfer matrix method, Eq. (16)
with supersymmetry algebra, a new and exact quantization
condition, Eq. (19) is suggested. In this new quantization
only the ground state eigenfunctions of supersymmetric
partner Hamiltonians are necessary while the original quanti-
zation condition requires the eigenfunctions of all states. It
reduces mathematical or computational efforts a lot when
the eigenenergies of a system are evaluated.

The usage of the new quantization is successfully demon-
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strated for determining the eigenenergies of the Coulomb
potential. During the course of work the so-called scattering-
led phase shift is evaluated and analyzed. Interestingly the
phase shift for the Coulomb potential is found to be constant,
i.e., all the eigenstates have the same phase shift for a given
l. Particularly when l = 0 (s waves), δn = 0, i.e., there is no
phase shift. Then the quantization condition is reduced to a
simple form of

 n = 0, 1, 2, … (35)

The above equation i.e., integration of momentum over
position variable, is a well-known form of quantization. 

For example, the WKB quantization is 

 n = 0, 1, 2, … (36)

As mentioned above, the harmonic oscillator and the Morse
potentials have . Inserting it into Eq. (16), one
immediately finds that the ATMM quantization is reduced to
the above WKB quantization Eq. (36). This is the reason
why the WKB quantization is exact for the two poten-
tials.5,15,19,21,22 Therefore δn is critical in judging whether a
certain quantization condition is exact or not.

Finally we would like to mention more about the super-
symmetry of hydrogenlike atoms. From Eq. (24), one
immediately finds that the principal quantum number
N(= ) and the angular momentum quantum number
l(= 0, 1, 2,…, N – 1) are related to each other. For example,

for N = 1, there is only one choice of n and l, i.e., (n = 0 and
l = 0; 1s wave or orbital). And both have the same eigen-
energy because of the same N. But for N = 2, there aret two
possibilities (doubly degenerate), i.e., (n = 1 and l = 0; 2s
orbital) and (n = 0 and l = 1; 2p orbital). For N = 3, there
exist three degenerate states, i.e., (n = 2 and l = 0; 3s orbital),
(n = 1 and l = 1; 3p orbital), and (n = 0 and l = 2; 3d orbital).
This relation is illustrated in Figure 2. Comparing Figure 2
with Figure 1, one can understand that hydrogenlike atoms
indeed have a supersymmetric structure.23,24
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Figure 2. Supersymmetric nature of hydrogenlike atom energy levels.


