Synthesis of 3-Benzyl- or 3-Benzoyl-7,8-dihydro-6H-chromene Derivatives Starting from Baylis-Hillman Adducts

Seung Chan Kim, Hyun Seung Lee, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr
Received October 9, 2006

Key Words : Chromene, Baylis-Hillman adducts, β-Diketone, PCC

Recently, chemical transformations using the BaylisHillman adducts have been extensively investigated by us and other groups. ${ }^{1}$ Among them, the reaction of BaylisHillman acetates and β-diketones or β-keto esters provided a variety of interesting compounds including alkylidene cyclohexenones, ${ }^{2}$ 2-hydroxyacetophenones, ${ }^{3}$ 3,4-dihydro$2 H$-pyrans, ${ }^{4} \quad 3$-alkylidenebicyclo[3.2.1] octan-8-ones, ${ }^{5} \quad 4$ -arylidenecyclohexane-1,3-diones, ${ }^{6}$ and 4-methylene-2-cyclohexenones. ${ }^{7}$ Recently, 3-benzyl-2-hydroxy-7,8-dihydro- 6 H -quinolin-5-ones were synthesized from the reaction of Baylis-Hillman acetate and cyclic enaminone. ${ }^{8}$
Various kinds of α-pyrones and chromene derivatives show interesting biological activities ${ }^{9,10}$ and much synthetic effort has been devoted to the synthesis of them. ${ }^{9,10} \mathrm{We}$ reasoned that we could prepare the chromene skeleton by using the Baylis-Hillman adduct and cyclic β-diketone as depicted in Scheme 1. The reaction of the Baylis-Hillman
acetate $\mathbf{1}$ and cyclohexane-1,3-dione (2a) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF gave 3a in 68% yield. Conversion of 3a into the corresponding lactone derivative 4 a was conducted by refluxing 3a in p-xylene to give $\mathbf{4 a}$ in 59% yield. The exodouble bond of $\mathbf{4 a}$ could be isomerized in its endo-position by treatment with DMAP (4,4-dimethylaminopyridine) in refluxing p-xylene to give $\mathbf{5 a}$ in 89% yield. As easily expected, the reaction of $\mathbf{3 a}$ in the presence of DMAP in refluxing p-xylene gave 5a in 75% yield directly. In addition, compound 5a was synthesized directly from the reaction of $\mathbf{1}$ and $\mathbf{2 a}$ in 78% yield without separation of the intermediate 3a as also shown in Scheme 1.
As a next trial, we examined the allylic oxidation of $\mathbf{4 a}$ and 5a, and we found that the reaction of $\mathbf{4 a}$ and PCC (pyridinium chlorochlomate) produced the 3-benzoyl derivative $\mathbf{6 a}$ in 63% yield. ${ }^{11}$ However, the oxidation of $\mathbf{5 a}$ with PCC showed no reaction. Like this we found efficient syn-

Scheme 1

Table 1. Synthesis of 5a-d from $\mathbf{1}$ and 2a-d ${ }^{a}$
Entry
${ }^{a}$ Conditions: (i) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.1 equiv), DMF, rt, 1 h . (ii) extractive workup. (iii) DMAP (equiv), p-xylene, reflux, 2 h .

Table 2. Synthesis of 6a-d from $\mathbf{1}$ and 2a-d

${ }^{a}$ Conditions: (i) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.1 equiv), DMF, rt, 1 h . (ii) extractive workup. (iii) p-xylene, reflux, $14 \mathrm{~h} .{ }^{b}$ Conditions: PCC (2.2 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 24 h. ${ }^{c}$ Compound $\mathbf{5 d}$ was formed together (15%).
thetic methods of both 3-benzyl-7,8-dihydro-6 H -chromene (5a) and 3-benzoyl-7,8-dihydro-6 H -chromene (6a).
In order to check the generality of the reaction we used different types of active methylene compounds $\mathbf{2 b}$-d and obtained similar results as summarized in Table 1 and 2. As shown in Table 1, the use of dimedone ($\mathbf{2 b}$), 5-methylcyclo-hexane-1,3-dione (2c), and 5-phenylcyclohexane-1,3-dione (2d) gave the corresponding 3-benzylchromene derivatives

5b-d in moderate yields (64-81\%) by following the same procedures of Scheme 1. In the same contexts, the corresponding 3-benzoylchromene derivatives $\mathbf{6 b}$-d were obtained in $31-73 \%$ yields analogously by PCC oxidation of $\mathbf{4 b - d}$.
In summary, we disclosed the synthesis of 3-benzyl-7,8-dihydro- 6 H -chromene and 3-benzoyl-7,8-dihydro- 6 H -chromene derivatives starting from Baylis-Hillman adducts in a practically simple process. The studies on the biological activities of prepared compounds are currently underway.

Experimental Section

Typical procedure for the synthesis of compound 4a: To a stirred solution of the Baylis-Hillman acetate 1 (468 $\mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathbf{2 a}(224 \mathrm{mg}, 2.0 \mathrm{mmol})$ in DMF (3 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(304 \mathrm{mg}, 2.2 \mathrm{mmol})$ and strirred at room temperature for 2 h . The reaction mixture was poured into aqueous HCl solution and extracted with ether. After drying with MgSO_{4}, removal of solvent, and column chromatographic purification process (hexanes/EtOAc, $3: 1$) gave pure 3a, 389 mg (68%). The compound 3a ($286 \mathrm{mg}, 1.0$ mmol) in p-xylene was heated to reflux for 10 h . After removal of solvent and column chromatographic purification process (hexanes/EtOAc, $5: 1$) we obtained pure $\mathbf{4 a}, 150 \mathrm{mg}$ (59\%). Other compounds 4b-d were synthesized analogously and the spectroscopic data of $\mathbf{3 a}, \mathbf{4 a - d}$ are as follows.

Compound 3a: 68\%; white solid, mp 92-94 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1712,1576,1375,1273 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 1.82 (quintet, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$ ($\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.51(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 7.32-7.62(\mathrm{~m}$, $5 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 9.76(\mathrm{~s}, 1 \mathrm{H})$.
Compound 4a: 59\%; white solid, mp 110-112 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1741, 1662, 1371, $1165 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 2.01$ (quintet, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.38(\mathrm{t}, J=6.6 \mathrm{~Hz}$, 2 H), 2.49-2.54 (m, 2H), 3.49-3.52 (m, 2H), 7.30-7.46 (m, $5 \mathrm{H}), 7.90(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 20.50, 23.30, 27.24, 36.41, 111.89, 120.84, 128.79, 130.09, 130.74, 134.19, 144.37, 162.40, 165.33, 197.24.

Compound 4b: 50\%; white solid, mp 140-142 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1745,1664,1371,1167 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ MHz) $\delta 1.12(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.58-3.61(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.99(\mathrm{t}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.19,28.31,32.42$, 40.99, 50.46, 110.67, 120.85, 128.83, 130.12, 130.78, 134.25, 144.44, 162.60, 163.57, 197.05.

Compound 4c: 63%; white solid, mp 130-133 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1743, 1660, 1599, 1379, $1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 1.13(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.09-2.19(\mathrm{~m}, 1 \mathrm{H})$, 2.26-2.40 (m, 2H), 2.50-2.63 (m, 2H), 3.58 (s, 2H), 7.40$7.53(\mathrm{~m}, 5 \mathrm{H}), 7.98(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz) $\delta 20.85,23.30,28.38,35.27,44.75,111.46,120.86$, $128.82,130.11,130.77,134.24,144.41,162.53,164.67$, 197.12.

Compound 4d: 59\%; viscous oil; IR (KBr) 1743, 1660, $1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 2.59-2.92 (m, $4 \mathrm{H}), 3.41-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.56(\mathrm{~m}, 10 \mathrm{H})$, $8.00(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$
$23.37,34.81,38.75,43.50,111.75,120.64,126.59,127.32$, 128.87, 128.92, 130.21, 130.81, 134.20, 141.82, 144.66, 162.38, 164.38, 196.22.

Typical procedure for the synthesis of 3-benzylchromene derivative 5a: To a stirred solution of the BaylisHillman acetate $\mathbf{1}(234 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathbf{2 a}(112 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in DMF (2 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(152 \mathrm{mg}, 1.1$ mmol) and strirred at room temperature for 1 h . The reaction mixture was poured into aqueous HCl solution and extracted with ether. After drying with MgSO_{4} and removal of solvent the crude product was dissolved in p-xylene (2 mL). To the reaction mixture DMAP ($122 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added and the reaction mixture was heated to reflux for 2 h . After removal of solvent and column chromatographic purification process (hexanes/EtOAc, $3: 1$) we obtained analytically pure $\mathbf{5 a}, 191 \mathrm{mg}$ (78%). Other compounds $\mathbf{5 b}$-d were synthesized analogously and the spectroscopic data of 5a-d are as follows.
Compound 5a: 78\%; viscous oil; IR (KBr) 1734, 1680, $1396 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.12$ (quintet, $J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.76(\mathrm{~s}, 2 \mathrm{H}), 7.19-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.30,27.72,36.31,36.48,114.62$, 126.81, 127.02, 128.66, 129.03, 135.41, 137.42, 161.11, 172.14, 194.05.

Compound 5b: 81%; white solid, mp $139-140{ }^{\circ} \mathrm{C}$; IR (KBr) 1736, 1680, $1396 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.05(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 7.17-$ $7.19(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 28.27,32.65,36.34,41.41,50.45$, $113.59,126.83,126.87,128.68,129.11,135.15,137.38$, 161.47, 170.80, 193.98.

Compound 5c: 64%; white solid, mp 103-105 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1736, 1680, $1396 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.15(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.20(\mathrm{dd}, J=15.9$ and 11.1 Hz , $1 \mathrm{H}), 2.31-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=$ 18.3 and $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.52$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.82,28.21,35.65$, 36.33 , 44.73, 114.19, 126.83, 126.97, 128.68, 129.07, 135.31, 137.42, 161.24, 171.57, 194.00.

Compound 5d: 81%; white solid, mp 109-110 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1736, 1680, $1396 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 2.67-2.87(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.43-3.53(\mathrm{~m}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.40(\mathrm{~m}, 10 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 35.29,36.39,38.54,43.62$, 114.36, 126.53, 126.89, 127.33, 127.57, 128.73, 129.04, 129.09 , 135.19, 137.34, 141.21, 161.11, 171.13, 193.19.

Typical procedure for the synthesis of 3-benzoylchromene derivative 6a: To a stirred solution of $\mathbf{4 a}(254 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added PCC ($431 \mathrm{mg}, 2.2$ mmol) and strirred at room temperature for 24 h . The reaction mixture was filtered through a Celite pad and washed thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After removal of solvent and column chromatographic purification process (hexanes/EtOAc, 3 : 1) we obtained analytically pure $\mathbf{6 a}, 169 \mathrm{mg}$ (63%). Other compounds 6b-d were synthesized analogously and the spectroscopic data of 6a-d are as follows.

Compound 6a: 63%; white solid, mp 102-104 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1753, 1685, 1562, 1390, $1261 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 2.22$ (quintet, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.62(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.59-$ $7.64(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.83(\mathrm{~m}, 2 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.01,28.34,36.42,114.27,123.83$, 128.61, 129.50, 133.78, 135.92, 141.91, 157.37, 176.87, 190.70, 193.03.

Compound 6b: 73%; white solid, mp $149-151{ }^{\circ} \mathrm{C}$; IR (KBr) $1759,1684,1564 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.12(\mathrm{~s}, 6 \mathrm{H}), 2.41(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 2 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 2 \mathrm{H})$, 7.52-7.57 (m, 1H), 7.73-7.76 (m, 2H), 8.10(s, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 28.31,32.68,41.98,50.39,113.29$, 123.68, 128.63, 129.55, 133.82, 135.91, 141.76, 157.74, 175.65, 190.80, 193.00.

Compound 6c: 48%; white solid, mp 146-147 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1747, 1684, 1564, 1392, $1263 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 1.21(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{dd}, J=16.2$ and $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.96$ (dd, $J=16.6$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45-7.50 (m, 2H), 7.58-7.64 $(\mathrm{m}, 1 \mathrm{H}), 7.79-7.83(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 20.79,28.00,36.17,44.64,113.85,123.78$, 128.61, 129.52, 133.79, 135.92, 141.81, 157.50, 176.30, 190.73, 192.98.

Compound 6d: 31%; white solid, mp $155-157{ }^{\circ} \mathrm{C}$; IR (KBr) 1759, 1685, 1562, 1392, $1252 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 2.82(\mathrm{dd}, J=16.8$ and $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J$ $=16.8$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.64$ $(\mathrm{m}, 1 \mathrm{H}), 7.26-7.51(\mathrm{~m}, 7 \mathrm{H}), 7.59-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.83$ $(\mathrm{m}, 2 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 35.86$, $38.27,43.60,114.02,124.08,126.53,127.78,128.66$, $129.18,129.55,133.88,135.89,140.75,141.68,157.39$, 175.80, 190.66, 192.26.

References and Notes

1. For the general review articles, see: (a) Basavaiah, D.; Jaganmohan, R.; Satyanarayana, T. Chem. Rev. 2003, 103, 811. (b) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481. (c) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627.
2. Chamakh, A.; Amri, H. Tetrahedron Lett. 1998, 39, 375.
3. Kim, J. N.; Im, Y. J.; Kim, J. M. Tetrahedron Lett. 2002, 43, 6597.
4. Kim, J. N.; Kim, J. M.; Lee, K. Y.; Gowrisankar, S. Bull. Korean Chem. Soc. 2004, 25, 1733.
5. Kim, J. N.; Kim, J. M.; Lee, K. Y. Synlett 2003, 821.
6. Im, Y. J.; Lee, C. G.; Kim, H. R.; Kim, J. N. Tetrahedron Lett. 2003, 44, 2987.
7. Kim, J. M.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 328.
8. Gowrisankar, S.; Na, J. E.; Lee, M. J.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 319.
9. For the biological activities of α-pyrones and chromene derivatives, see: (a) Chyu, C.-F.; Chiang, Y.-M.; Lin, H.-C.; Kuo, Y.-H. Tetrahedron Lett. 2004, 45, 641. (b) Afarinkia, K.; Posner, G. H. Tetrahedron Lett. 1992, 33, 7839. (c) Hsung, R. P.; Shen, H. C.; Douglas, C. J.; Morgan, C. D.; Degen, S. J.; Yao, L. J. J. Org. Chem. 1999, 64, 690. (d) Chen, C.-H.; Liao, C.-C. Org. Lett. 2000, 2, 2049. (e) Schlingmann, G.; Milne, L.; Carter, G. T. Tetrahedron 1998, 54, 13013. (f) Shi, X.; Leal, W. S.; Liu, Z.; Schrader, E.; Meinwald, J. Tetrahedron Lett. 1995, 36, 71. (g) Gehrt, A.; Erkel, G.; Anke, T.; Sterner, O. Z. Naturforsch 1997,
$53 c, 89$.
10. For the synthesis of α-pyrones and chromene derivatives, see: (a) Trummer, I.; Ziegler, E.; Wolfbeis, O. S. Synthesis 1981, 225. (b) Bohme, H.; Gratz, J. G. V. Tetrahedron 1977, 33, 841. (c) Kotretsou, S. I.; Georgiadis, M. P. Org. Prep. Proceed. Int. 2000, 32, 161. (d) Stanovnik, B. J. Heterocyclic Chem. 1999, 36, 1581. (e) Kepe, V.; Polanc, S.; Kocevar, M. Heterocycles 1998, 48, 671. (f) Larock, R. C.; Doty, M. J.; Han, X. J. Org. Chem. 1999, 64, 8770. (g) Larock, R. C.; Han, X.; Doty, M. J. Tetrahedron Lett. 1998, 39, 5713. (h) Cerezo, S.; Moreno-Manas, M.; Pleixats, R. Tetrahedron 1998, 54, 7813. (i) Yao, T.; Larock, R. C. J. Org. Chem. 2003, 68, 5936. (j) Ma, S.; Yu, S.; Yin, S. J. Org. Chem. 2003, 68, 8996. (k) Zhu, X.-F.; Schaffner, A.-P.; Li, R. C.; Kwon, O. Org. Lett. 2005, 7, 2977. (1) Bellina, F.; Biagetti, M.; Carpita,
A.; Rossi, R. Tetrahedron 2001, 57, 2857. (m) Bellina, F.; Biagetti, M.; Carpita, A.; Rossi, R. Tetrahedron Lett. 2001, 42, 2859. (n) Ma, S.; Yin, S.; Li, L.; Tao, F. Org. Lett. 2002, 4, 505. (o) Biagetti, M.; Bellina, F.; Carpita, A.; Stabile, P.; Rossi, R. Tetrahedron 2002, 58, 5023.
11. For similar PCC oxidation in a allylic system, see: (a) Dauben, W. G.; Lorber, M.; Fullerton, D. S. J. Org. Chem. 1969, 34, 3587. (b) Parish, E. J.; Chitrakorn, S.; Wei, T.-Y. Synth. Commun. 1986, 16, 1371. (c) Parish, E. J.; Wei, T.-Y. Synth. Commun. 1987, 17, 1227. (d) Fernandes, R. A.; Kumar, P. Tetrahedron Lett. 2003, 44, 1275. (e) Cuellar, M. A.; Moreno, L. E.; Preite, M. D. Arkivoc 2003 (x), 169. (f) Page, P. C. B.; McCarthy, T. J. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 7, pp 99-113.
