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Stimuli-responsive surfaces, which switch their physical,
chemical and biological properties in response to external
stimuli, have a great potential in many technologically
important areas such as nanoelectromechanical systems,
bioanalysis, and biomimetics.1 In the biotechnological fields,
stimuli-responsive surfaces could also be utilized for
developing surface adhesion modifiers, biochemically
triggered actuators or valves, supports for cell culture, and
tissue engineering.2 For example, thermoresponsive poly(N-
isopropylacrylamide) (PNIPAAm) was grafted on tissue
culture polystyrene (TCPS) cell culture surfaces by electron
beam irradiation, and the PNIPAAm-grafted surfaces were
used for “cell sheet engineering”.2a Cells adhere, spread and
proliferate at 37 oC, and at 25 oC the cultured cells are
detached spontaneously from the surfaces without any enzy-
matic or mechanical means because of the phase transition
of PNIPAAm: the lower critical solution temperature
(LCST) of PNIPAAm is about 32 oC and the phase transition
of PNIPAAm in water takes place over a narrow range of
temperature (1-2 oC).3 Above the LCST, PNIPAAm is
hydrophobic (cell-adherent) in water due to dehydration (loss
of hydrogen bonding between the isopropylamide moiety
and water molecules) and subsequent aggregation of the
polymer chains, while PNIPAAm is hydrophilic (cell-repellant)
in water due to the hydrogen bonding below the LCST.

Formation of stimuli-responsive surfaces is usually
achieved by surface modification of solid substrates,4 and
among the methods for modifying surfaces, surface-initiated
polymerization, where a polymerization initiator is directly
bound onto a surface and a polymer chain is grown from the
surface, has intensively been investigated as a result of
possibility of controlling the density and thickness of grafted
polymers.5 Huck and collaborators reported a surface-
initiated, atom-transfer radical polymerization (SI-ATRP) of
N-isopropylacrylamide (NIPAAm) and its derivatives in a
water : methanol (1 : 1) solution.6 In this communication, we
report the aqueous, SI-ATRP of NIPAAm on gold surfaces
and a preliminary result of cell culture on the PNIPAAm-
grafted surfaces.

Self-assembled monolayers (SAMs)7 of the disulfide
terminating in bromoester,8 were formed by immersing a
freshly prepared gold substrate in a 1 mM ethanolic solution
of the disulfide for 24 h at room temperature. The SAM-
coated gold substrate was then placed in an aqueous solution
of NIPAAm (0.5, 1.0, 2.0, or 4.0 M), CuBr (1 mol% relative
to NIPAAm) and 2,2'-dipyridyl (2 mol% relative to NIPAAm),
and the mixture was stirred for 2 h at room temperature.
Grazing-angle infrared spectrum showed characteristic peaks
of PNIPAAm after the aqueous SI-ATRP: 1662 cm−1 (amide
I) and 1546 cm−1 (amide II). Figure 1 shows the effect of
NIPAAm concentrations on the thickness of PNIPAAm
films. We were able to grow about 300-nm thick PNIPAAm
films in a purely aqueous solution, whereas a 100-nm thick
PNIPAAm film was grown in the water : methanol (1 : 1)
solution.6a The thickness of the PNIPAAm films increased as
the monomer concentration was increased: 123-nm, 205-nm,
237-nm, and 270-nm thick PNIPAAm films were formed
with 0.5, 1.0, 2.0, and 4.0 M NIPAAm, respectively.

Surface-grown PNIPAAm forms a polymer brush, where
polymer chains are forced to stretch away from the surface
to avoid overlap. Theoretical and experimental studies
suggest that the properties of polymer brushes are different
from those of polymers in solution and the phase transition
of PNIPAAm (that is, coil-to-globule transition) proceeds
continuously as temperature is changed.9 The continuous
phase transition of PNIPAAm brushes would make it
required to scrutinize the temperature dependency of cell
attachment/detachment on a surface-grown PNIPAAm film.
In this respect, it is noteworthy that the detachment of L929
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Figure 1. (a) A graph of the thickness of PNIPAAm films vs.
NIPAAm concentrations. (b) A graph of the thickness of
PNIPAAm films vs. polymerization time. ( � ) 0.5 M; ( � ) 1 M;
( � ) 2 M; ( � ) 4 M.
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mouse fibroblasts occurred from a surface-grafted hydrogel
of PNIPAAm-g-poly(ethylene glycol) when temperature was
changed only by 1 oC,10 which implies that there is a critical
point in the continuous phase transition of surface-grafted
PNIPAAm films for the cell detachment. We, therefore,
studied cell attachment/detachment with the PNIPAAm
surfaces grafted by surface-initiated polymerization, “grafting-
from approach”. Figure 2 shows optical micrographs of NIH
3T3 fibroblasts after the cultivation on a 120-nm thick
PNIPAAm film at 37 and 40 oC. At each temperature, NIH
3T3 fibroblasts were cultivated for 24 h in Dulbecco's
modified Eagle's medium (DMEM) supplemented with 10%
fetal bovine serum (FBS) in 10% CO2. Of interest, we
observed no (or little if any) attachment of fibroblasts onto
the PNIPAAm surface at 37 oC (Figure 2a), which implies
that the thermoresponsive property of the surface-grown
PNIPAAm film was altered in terms of cell-adherent
property and the surface-grown PNIPAAm was still hydrated
(cell-repellant) in water at 37 oC.11 We presumed that
increase in temperature would make the PNIPAAm brushes
further collapse, which consequently made the surface cell-
adherent: increasing the cultivation temperature to 40 oC led
to the increased number of attached fibroblasts (Figure 2b).

In summary, we demonstrated the first example of a
surface-initiated, aqueous atom-transfer radical polymeri-
zation of N-isopropylacrylamide and studied temperature-
dependent bioadhesion of the formed poly(N-isopropyl-
acrylamide) (PNIPAAm) films by using cell cultivation of
fibroblasts. PNIPAAm-based materials have been exploited
in sensors, responsive membranes, drug-delivery vehicles,
anti-fouling surfaces, and tissue engineering. Facile control
over physicochemical properties of PNIPAAm films by
surface-initiated polymerization, therefore, would yield a
useful tool for developing tunable, “smart” surfaces.
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Figure 2. Optical micrographs of NIH 3T3 fibroblasts after the
cultivation on a 120-nm thick PNIPAAm film (a) at 37 oC and (b)
40 oC. Cells were fixed with 10% formalin solution and stained
with 1% rhodamine solution.


